Statistical Power: Foundations and Applications

Design-specific and General Approaches to Power and Sample Size Analyses

Joseph A. Olsen

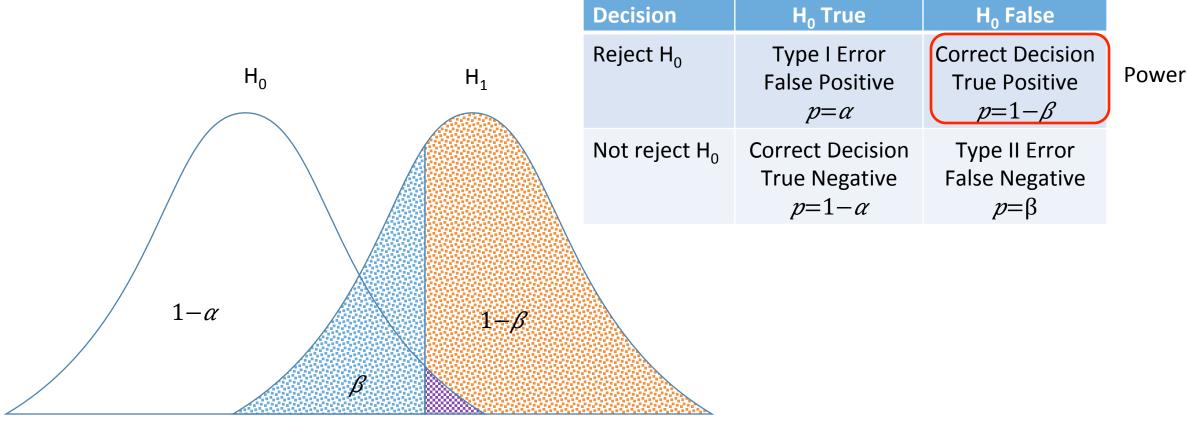
Family Studies Center Presentation

Presentation Goals

- Statistical Power Analysis
 - Background, context, and definition of Statistical Power Analysis
 - Statistical foundations of Power Analysis
 - Power analysis software
- Doing Power Analysis for Standard Designs
 - Difference Between two Means
 - Multiple Linear Regression Increment in R²
 - Difference Between Two Correlations
 - Comparing Two Means with Clustered Data
- Power Analysis for Other Designs Using Web Apps and Simulation
 - Structural Equation Models
 - Latent Growth Models
 - Actor-Partner Interdependence Model (APIM)
 - Mediation Model
 - Extended Mediation Analysis

Why Pay Attention to Statistical Power? Because You Want To...

- Statistically detect effects that are
 - Scientifically important
 - Clinically meaningful
 - More publishable
- Allocate sufficient but not excessive *resources* to data collection
- Provide information to grant reviewers, IRB, etc. to assess the proposal's quality, *potential for success*, and funding worthiness
- Contribute reliable and *reproducible results* to the literature


What are the Consequences of Insufficient Power?

- Recent reviews have found statistical power to detect the typical effect size in social/personality psychology research of approximately 50% with average power in some other fields as low as 20% - 30%
 - Underpowered studies are *less able to detect true relationships*
 - Low power studies lead to a greater proportion of false positives in the broader literature
 - The findings of low power original studies are *less likely to be successfully reproduced* through either direct or conceptual replication

When do Researchers Report Power Analyses?

- Reviews have found that only about 3 5% of research articles in psychological journals report power analyses (excluding theoretical, qualitative, single-case, simulation studies, meta-analyses), but this may have improved to as much as 10 - 15% in the last few years.
 - Researchers are more likely to report power analyses if journals include prospective power analysis in their *submission guidelines and editorial recommendations*
 - Nature Medicine 3%
 - New England Journal of Medicine 61%
 - Researchers are more likely to report power analyses for data collected during the study than for previously collected data
 - Sample size determination for newly collected data
 - Minimal effect size determination for existing data
 - Researchers are more likely to report power analyses if they have received *training* to conduct power analyses or have *previous experience* performing power analyses

What is Statistical Power?

Power and statistical decision making

• Type I error (*a*: False positive)

- Probability of incorrectly rejecting a true null hypothesis
- Type II error (β: False negative)
 - Probability of incorrectly failing to reject a false null hypothesis
- Power (1β : True positive)
 - Probability of correctly rejecting a false null hypothesis
- True negative (1-lpha)
 - Probability of correctly failing to reject a true null hypothesis

Decision	H _o True	H _o False	
Reject H _o	Type I Error False Positive α	Correct Decision True Positive $1-\beta$	Power
Not reject H ₀	Correct Decision True Negative $1-\alpha$	Type II Error False Negative β	

They all go together

- Sample size (a count: *N*)
 - How many people do I need in order to have a good chance of finding the effect?
- **Power** (a probability: $1-\beta$)
 - What's the chance of finding an effect that really is there?
- Effect size (a value: δ)
 - How big does an effect have to be in order to find it?
- Significance level—Type I error (a probability: *α*)
 - What's the chance of claiming an effect that doesn't really exist?
- Type II error (a probability: β)
 - What's the chance of missing a real effect?
- [Residual] Standard deviation (a value: S)
 - How much variability is there in the outcome [after accounting for the effect]?

Some Common uses of Statistical Power Analysis

- Before the data is collected
 - Determine the *sample size* (N) needed to achieve a given level of power $(1-\beta)$ for a designated effect size (δ) and significance level (α)
- After the data is collected but before it is analyzed
 - Determine the *expected level of power* (1−β) given the obtained sample size
 (N) for a designated effect size (δ) and significance level (α)
 - Determine the *minimum detectable effect size* (δ) given the obtained sample size (N) for a given level of power $(1-\beta)$ at a designated significance level (α)

Statistical Foundations of Power Analyses

The Centrality of Noncentrality

- The traditional Z *test statistic*:
 - $Z=y \downarrow 1 y \downarrow 2 / \sigma \sqrt{1/n \downarrow 1 + 1/n \downarrow 2}$
- The *noncentrality parameter* as the expectation of the test statistic where there is a mean difference in the population:
 - $\lambda = E(y \downarrow 1 y \downarrow 2 / \sigma \sqrt{1/n \downarrow 1} + 1/n \downarrow 2) = \mu \downarrow 1 \mu \downarrow 2 / \sigma \sqrt{n \downarrow 1 n \downarrow 2 / n \downarrow 1} + n \downarrow 2 = \sqrt{n \downarrow 1 n \downarrow 2 / n \downarrow 1} + n \downarrow 2 (\Delta / \sigma)$
- A simplification with *equal group sizes* (n↓1 = n↓2 = n↓c):
 λ=√ n↓c/2 (Δ/σ)

Power for Mean Difference Testing

• Power for **one-sided hypotheses** where Φ is the cumulative normal distribution function and α is designated *significance level* for the test:

•
$$1 - \beta \downarrow (one-sided) = \Phi(\lambda - z \downarrow 1 - \alpha)$$

• Power for *two-sided hypotheses*

•
$$1 - \beta l(two-sided) = \Phi(\lambda - z l 1 - \alpha/2) + \Phi(z l 1 - \alpha/2 - \lambda)$$

Sample Size Determination

- The standard normal *power quantile* for $(1-\beta)$:
 - $z \downarrow 1 \beta = \lambda z \downarrow 1 \alpha = \sqrt{n \downarrow c/2} (\Delta/\sigma) z \downarrow 1 \alpha$
- Solving for the common group *sample size* for *one-sided* hypotheses
 - $n\downarrow c = 2\sigma t (z \downarrow 1 \beta + z \downarrow 1 \alpha / \Delta) t 2$
- Approximating the *sample size* for *two-sided* hypotheses
 - $n\downarrow c \approx 2\sigma \uparrow 2 (z\downarrow 1 \beta + z\downarrow 1 \alpha/2 / \Delta) \uparrow 2$

Effect Size: Simple, Standardized, and Minimum Detectable

- The *simple effect size*
 - $\mu \downarrow 1 \mu \downarrow 2 = \Delta$
- The *standardized effect size* (aka Cohen's d):
 - $d=\Delta/\sigma$
- Approximating the *minimum detectable effect size* for a given sample size $n \downarrow c$ and power (1β) for *two-sided* hypotheses:
 - $\Delta \approx \sqrt{2/n \downarrow c} \sigma(z \downarrow 1 \beta + z \downarrow 1 \alpha/2)$

Common Conventions for Effect Size, Power, and Statistical Significance Level

- Standardized effect sizes: Cohen's d (.2, .5, .8)
- Power: 1-β(.80, .90, .95)
- Significance level: α (.001, .01, .05)

Software for Power Analysis and Sample Size Determination

Commercial Statistical Power Analysis Software

- Stata power
 - <u>http://www.stata-press.com/manuals/power-sample-size-reference-manual/</u>
- SAS Proc Power & Proc GLMPower
 - <u>https://support.sas.com/documentation/onlinedoc/stat/131/power.pdf</u>
 - <u>https://support.sas.com/documentation/onlinedoc/stat/131/glmpower.pdf</u>
- NCSS Sample Size and Power (PASS)
 - https://www.ncss.com/software/pass/
 - <u>https://www.ncss.com/software/pass/procedures/</u>
- Power and Precision
 - http://www.power-analysis.com/
- Nquery
 - <u>https://www.statsols.com/nquery-sample-size-and-power-calculation-for-successful-clinical-trials</u>

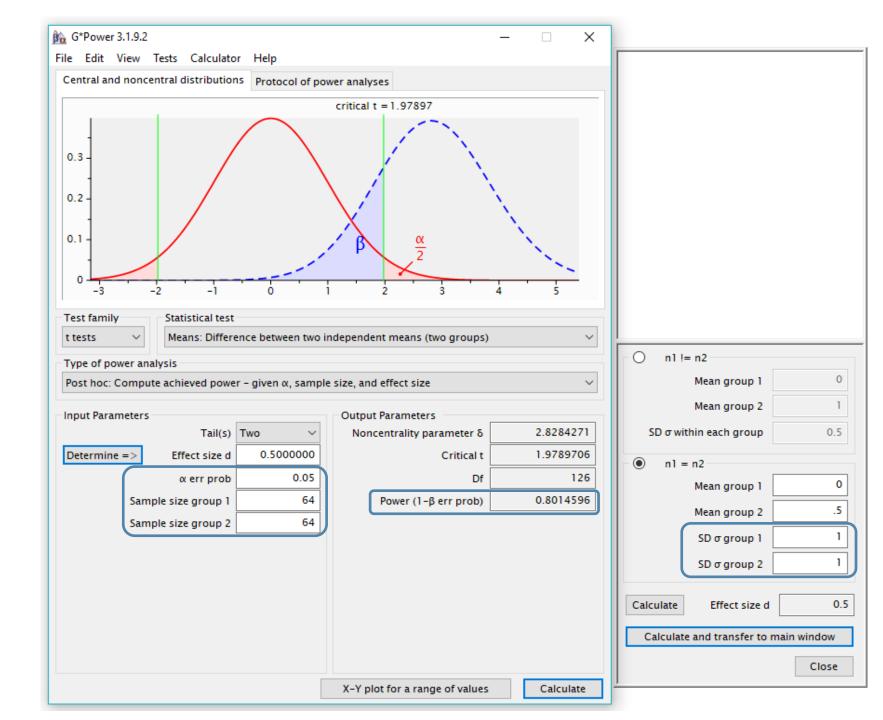
Freely Available Statistical Power Analysis Software

- G*Power (Windows & Mac)
 - <u>http://www.gpower.hhu.de/en.html</u>
- PS: Power and Sample Size Calculation (Windows & Mac)
 - <u>http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize</u>
- Applets for Power and Sample Size (Java)
 - https://homepage.divms.uiowa.edu/~rlenth/Power/
- R package pwr
 - <u>https://cran.r-project.org/web/packages/pwr/index.html</u>
 - https://www.statmethods.net/stats/power.html
 - <u>http://www.evolutionarystatistics.org/document.pdf</u>
- Optimal Design (Version 3.01) Software for Multi-level and Longitudinal Research (Windows)
 - <u>https://sites.google.com/site/optimaldesignsoftware/</u>

Doing Power Analysis in G*Power and Stata

Difference Between Two Means

Doing the analyses: Two group mean difference test


- The main rules:
 - You can only ask one question at a time
 - For each question, you must supply answers (or guesses) for the remaining ones
- Additional subtleties:
 - Are the population standard deviations known or unknown?
 - Are the two group sample sizes equal?
 - Are the two group standard deviations the same?

Do it with G*Power: Two group mean difference test

 $\mu \downarrow 1 = 0$

Group 2

 $\mu l = .5$

Do it with Stata: Two group mean difference test

• (Total) sample size • power twomeans 0, diff(.5) power(.8) sd(1) alpha(.05) Power • power twomeans 0, diff(.5) n(100) sd(1) alpha(.05) Optional Minimum detectable effect size defaults • power twomeans 0, n(100) power(.8) sd(1) alpha(.05) • Power with *unequal group sizes* • power twomeans 0, diff(.5) n1(30) n2(70) sd(1) alpha(.05) • Power with *unequal group standard deviations* • power twomeans 0, diff(.5) n(100) sd1(.8) sd2(1.2) alpha(.05)

Estimating Sample size, Power, & Effect size: Two-group mean difference test

		Sample size	Power	Effect size
Significance level	α	.05	.05	.05
Power	$1-\beta$.80	.6969	.80
Sample size	N	128	100	100
Effect size	δ	.50	.50	.5659
Standard deviation	S	1.00	1.00	1.00

Examine Sample Size for a Range of Effect Sizes

power twomeans 0 (.3(.1).9), alpha(.05) power(.8) sd(1)

Optional (default)

Performing iteration ... Estimated sample sizes for a two-sample means test t test assuming sd1 = sd2 = sdHo: m2 = m1 versus Ha: m2 != m1

	alpha	power	(N		N1		N2	d	elta		m1	m2		sd
	.05	. 8		352	1	76	1	76		.3		0	.3		1
	.05	.8		200	1	00	1	00		.4		0	.4		1
	.05	.8		128		64		64		.5		0	.5		1
	.05	.8		90		45		45		.6		0	.6		1
	.05	.8		68		34		34		.7		0	.7		1
	.05	.8		52		26		26		.8		0	.8		1
	.05	. 8		42		21		21	L	.9		0	.9	J	
	Default Estimate									Sp	ecify	Rang	ge	Γ	Default
Values Sample size					ize							ct size			alues

Plot Sample Size for a Range of Effect Sizes

power twomeans 0 (.3(.1).9), graph Estimated total sample size for a two-sample means test *t* test assuming $\sigma_1 = \sigma_2 = \sigma$ H₀: $\mu_2 = \mu_1$ versus H_a: $\mu_2 \neq \mu_1$ 400 · 300 Total sample size (N) 200 100 0 .6 .8 .9 .3 .4 .5 Experimental-group mean (μ_2) Parameters: α = .05, 1- β = .8, μ_1 = 0, σ = 1

Examine Power for a Range of Sample Sizes

. power twomeans 0 .5, n(80(10)160) alpha(.05) sd(1)

Optional (default)

Estimated power for a two-sample means test

t test assuming sd1 = sd2 = sd

Ho: m2 = m1 versus Ha: m2 != m1

ē	alpha	power	N	Nl	N2	delta	ml	m2	sd
	.05	.5981	80	40	40	.5	0	.5	1
	.05	.6502	90	45	45	.5	0	.5	1
	.05	.6969	100	50	50	.5	0	.5	1
	.05	.7385	110	55	55	.5	0	.5	1
	.05	.7753	120	60	60	.5	0	.5	1
	.05	.8076	130	65	65	.5	0	.5	1
	.05	.8358	140	70	70	.5	0	.5	1
	.05	.8604	150	75	75	.5	0	.5	1
	.05	.8816	160	80	80	.5	0	.5	
L	1	1							
Def Val		Estimate Power	Specif sample	y range of e sizes			Specify effect size		Default Value

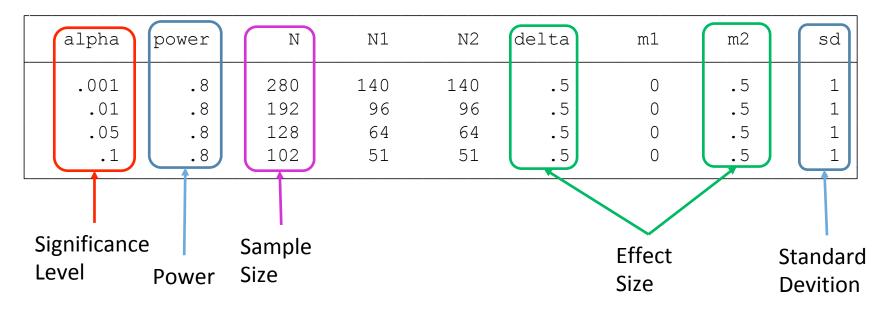
Plot Power for a Range of Sample Sizes

. power twomeans 0.5, n(80(10)160) graph Estimated power for a two-sample means test *t* test assuming $\sigma_1 = \sigma_2 = \sigma$ $H_0: \mu_2 = \mu_1$ versus $H_a: \mu_2 \neq \mu_1$.9 .8 Power (1-B) .7 .6 80 100 120 140 160 Total sample size (N) Parameters: $\alpha = .05$, $\delta = .5$, $\mu_1 = 0$, $\mu_2 = .5$, $\sigma = 1$

Examine the Minimum Detectable Effect Size for a Range of Sample Sizes

. power twomeans 0, power(.8) n(80(10)160) alpha(.05) sd(1)

Optional (default)


Estimated experimental-group mean for a two-sample means test t test assuming sd1 = sd2 = sdHo: m2 = m1 versus Ha: m2 != m1; m2 > m1

	alpha	power	N	Nl	N2	delta	ml	m2		sd
	.05	.8	80	40	40	.6343	0	.6343		1
	.05	.8	90	45	45	.5972	0	.5972		1
	.05	.8	100	50	50	.5659	0	.5659		1
	.05	.8	110	55	55	.5391	0	.5391		1
	.05	.8	120	60	60	.5157	0	.5157		1
	.05	.8	130	65	65	.4952	0	.4952		1
	.05	.8	140	70	70	.4769	0	.4769		1
	.05	.8	150	75	75	.4605	0	.4605		1
	.05	.8	160	80	80	.4457	0	.4457		1
L					—		\mathcal{T}			
	Default Specify Specify range of Power sample sizes						Estimate effect siz		D	efault

Examine Sample Size for a Selected Range of Significance Levels

power twomeans 0 .5, alpha(.001 .01 .05 .1) power(.8) sd(1) (default)

Estimated sample sizes for a two-sample means test t test assuming sd1 = sd2 = sdHo: m2 = m1 versus Ha: m2 != m1

Paired t-test for Dependent Data

- Research Scenarios
 - Pre-post differences
 - Husband-wife differences
- Statistical Considerations
 - Power and sample size depend on the pre-post correlation ho
 - Standard error of the difference: $SE\downarrow diff = \sigma\sqrt{2(1-\rho)}$
 - Standardized effect size: $\delta = (x \downarrow 2 x \downarrow 1) / SE \downarrow diff$

Examine Sample Size for a Selected Range of Pre-post Correlations

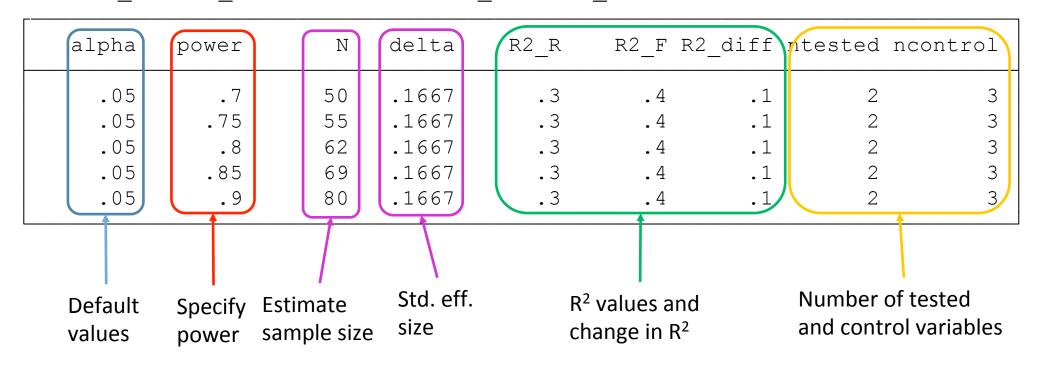
power pairedmeans 0 .5, corr(.2(.1).8) alpha(.05) power(.8) sd(1)

(default)

Default

Optional

Estimated sample size for a two-sample paired-means test Paired t test assuming sd1 = sd2 = sdHo: d = d0 versus Ha: d != d0


alpha delta d0 ma2 sd d sd power Ν da ma1 corr .05 . 8 53 .3953 .5 .5 1.265 .2 0 \cap .05 . 8 46 .4226 .5 .5 1.183 .3 0 $\left(\right)$.05 . 8 .4564 .5 .5 40 1.095 . 4 0 \cap . 8 .5 .5 .5 .05 34 .5 $\left(\right)$ \cap . 8 .05 28 .559 .5 .5 .8944 .6 0 $\left(\right)$.6455 .5 .05 .8 21 (.5 .7746 $\left(\right)$.05 . 8 15 .7906 \cap .5 .5 .6325 . 8 \cap Specify range Default Estimate Standard error Standardized Unstandardize of correlations sample size effect size values of the difference d effect size

Doing Power Analysis in Stata

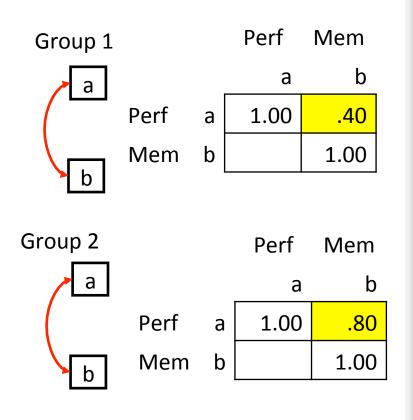
Multiple Linear Regression Increment in R² Power Analyses

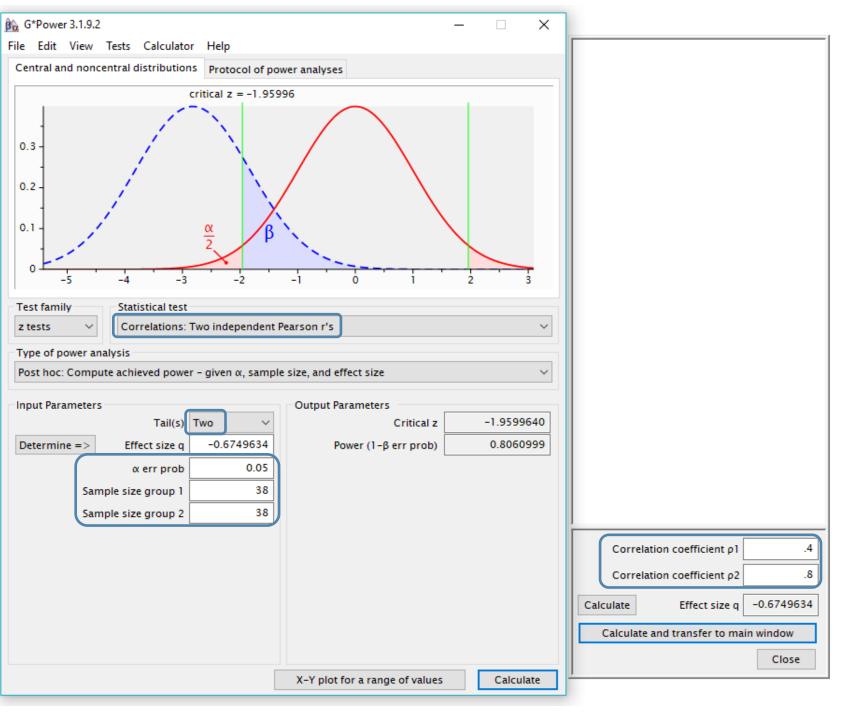
Examine Sample Size for a Specified Range of Power and the Number of Tested and Controlled Variables


Estimated sample size for multiple linear regression F test for R2 testing subset of coefficients Ho: R2 F = R2 R versus Ha: R2 F != R2 R

Examine Power for a Specified Range of Sample Sizes and the Number of Tested and **Controlled Variables** Optional power rsquared .3 .4, n(40(10)80) ntested(2) ncontrol(3) alpha(.05)

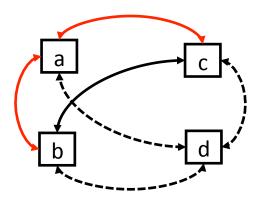
(default)

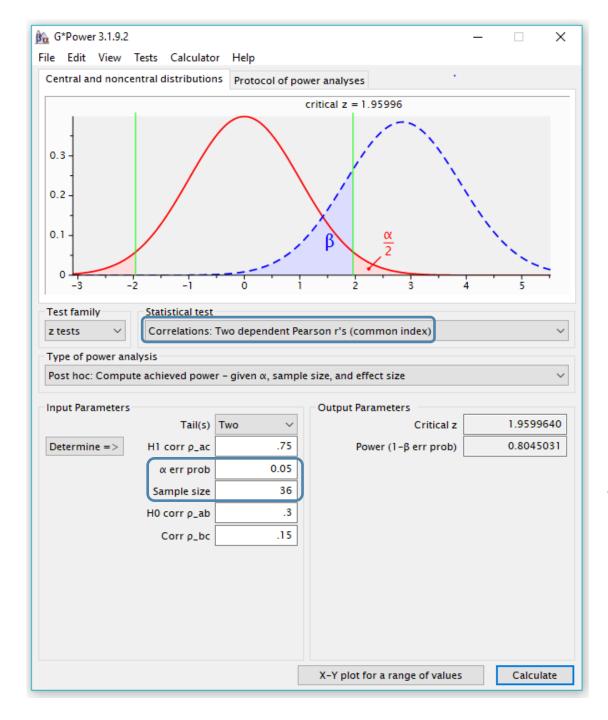

Estimated power for multiple linear regression F test for R2 testing subset of coefficients Ho: $R2_F = R2 R$ versus Ha: R2 F != R2 R



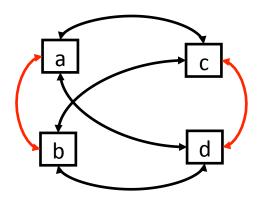
Doing Power Analysis with G*Power

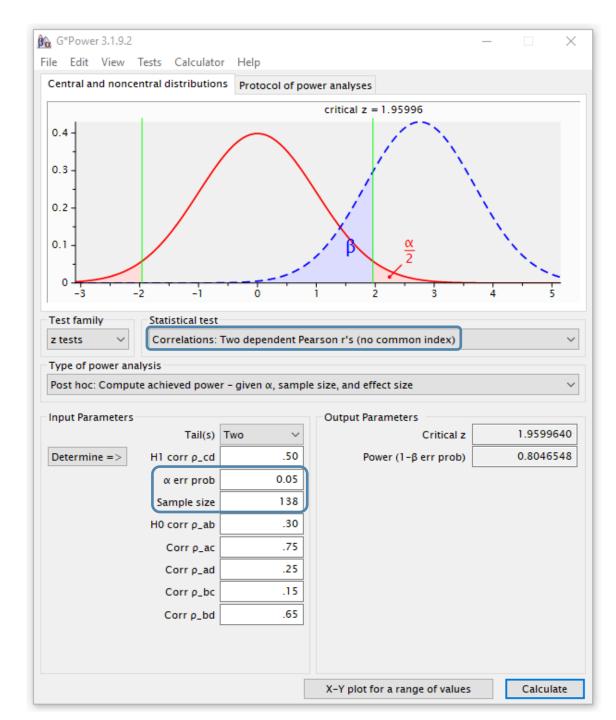
Difference Between Two Correlations


Difference Between Two Independent Correlations



Difference Between Two Overlapping Dependent Correlations


			Pre		Pc	ost
			Perf	Mem	Perf	Mem
			а	b	С	d
Pre	Perf	а	1.00	.30	.75	.25
	Mem	b		1.00	.15	.65
Post	Perf	С			1.00	.50
	Mem	d				1.00



Difference Between Two Non-overlapping Dependent Correlations

			Pre		Po	ost
			Perf	Mem	Perf	Mem
			а	b	C	d
Pre	Perf	а	1.00	.30	.75	.25
	Mem	b		1.00	.15	.65
Post	Perf	С			1.00	.50
	Mem	d				1.00

Doing Power Analysis with Stata

Comparing Two Means with Clustered Data

Use Stata to Estimate Power for a Cluster Randomized Design

Consider a design with K clusters each having 5 members, in each of two treatments.

Estimate power for designs with K = 5 to 35 clusters

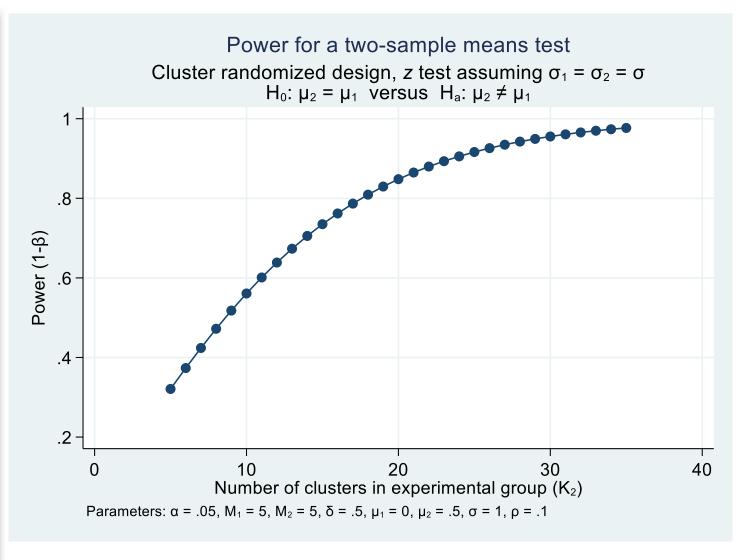
Using a standard (Cohen's d) medium effect size of .5, with a two-sided significance level of .05, and a .10 Intraclass Correlation

Stata power command

power twomeans 0 .5, k2(5(1)35) m1(5) m2(5) rho(.1) ///
table(power K2 M2 delta rho) ///
graph(ydimension(power) xdimension(K2))

nowe	er twome	ans clust	er - Power analysis for a t	wo-sample means test in a CRD — 🗌 🗙
Main	Table	Graph	Iteration	
	Table	orapri	iteration	
Comp				* Accepts numlist (Examples)
Power				~
Error	probabi	lities		
0.05	5		* Significance level	
Clust	ters			
Spec	ify the n	umber of	clusters:	Specify cluster sizes/sample sizes:
Gro	up cluste	er and rati	• ~	Group cluster sizes \checkmark
5(1))35		* Experimental V	5 * Control
1			* Ratio, K2/K1	5 * Experimental
	llow frac	tional nur	nbers of clusters and sam	nple sizes
			* Control * Experimental ~	Standard deviation and intraclass correlation Common standard deviation Common standard deviation Group standard deviations Control * Control * Experimental .1 * Intraclass correlation
Sides: Two-s	sided test		* Coefficient of variation	
∐ Trea	at numb	er lists in s	tarred(*) options as paral	lel
0	P			OK Cancel Submit

Tabulate Power Results for Clustered

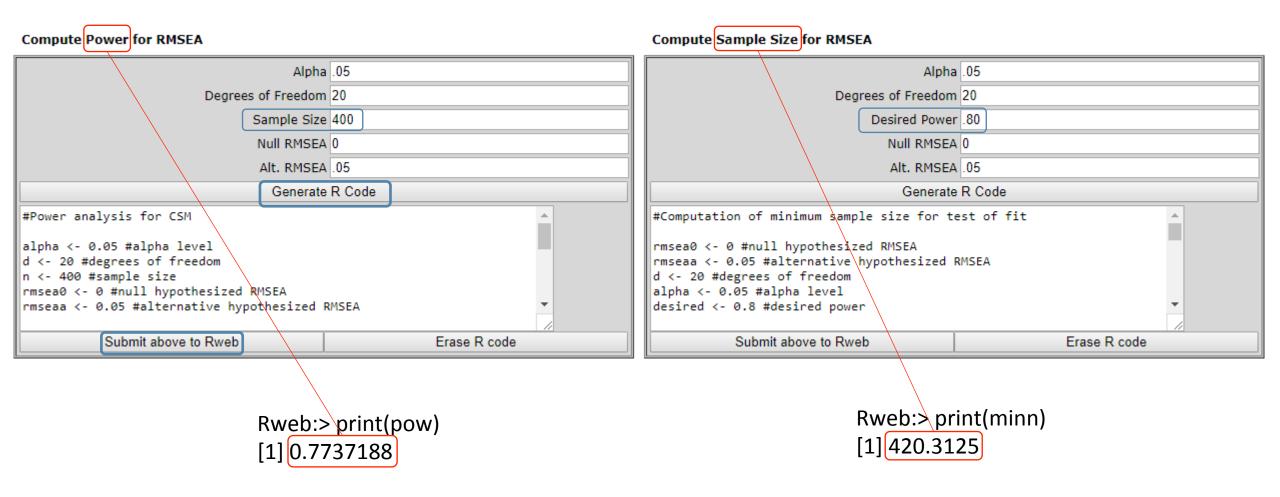

rho

.1 .1

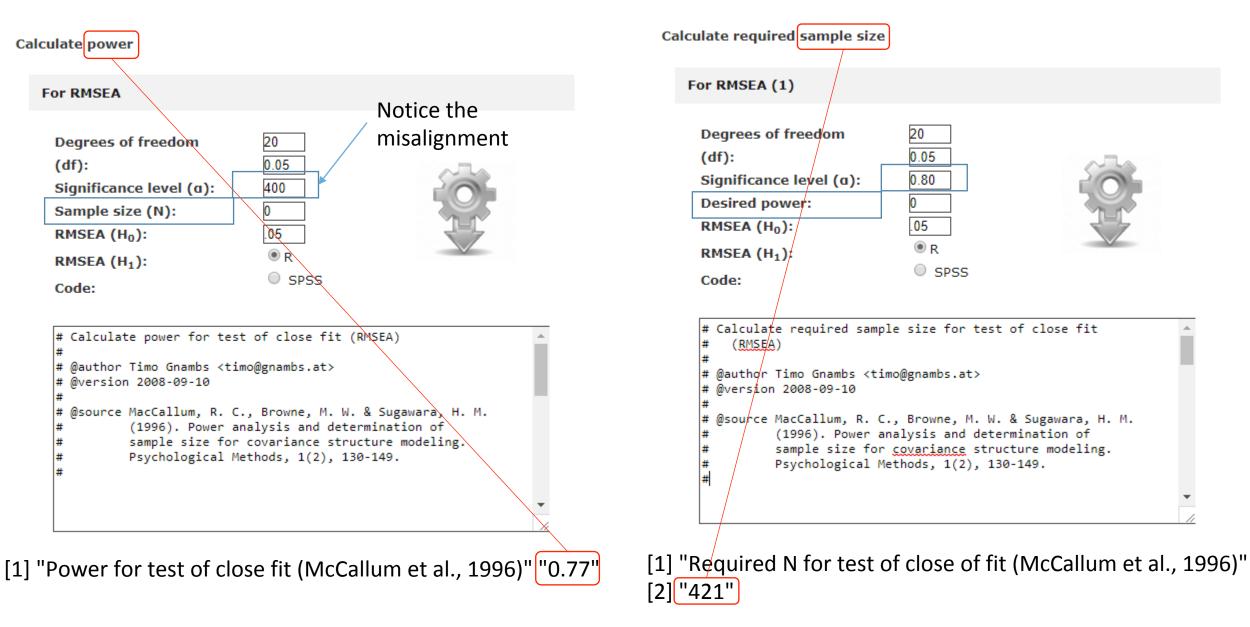
ref woments, luster - Power analysis for a two-sample means test in a CRD — X	power	K2	M2	delt
n Table Graph Iteration	.3209	5	5	
duce: Choose desired items	.3734	6	5	
	.4239	7	5	
able specification	.4721	8	5	
) Choose columns to display	.5178	9	5	
Significance level Power (On) Choose	.5608	10	5	
Type-II-error probability Remove	.6011	11	5	
Number of clusters in the control group	.6386	12	5	
Number of clusters in the experimental group (On) Ratio of numbers of clusters, experimental to control	.6733	13	5	
	.7054	14	5	
	.7349	15	5	
) Display all supported columns	.762	16	5	
Width: Format:	.7867	17	5	
Do not use default column formats Draw divider lines between columns	.8092	18	5	
Display rows as computations are performed	.8296	19 20	5 5	
	.8647	20 21	5	
0 🐳 Draw a horizontal separator every # lines	.8798	21	5	
Save table data as dataset	.8933	23	5	
	.9055	24	5	
Browse	.9163	25	5	
Overwrite file if it already exists	.926	26	5	
	.9347	27	5	
	.9424	28	5	
	.9493	29	5	
	.9554	30	5	
	.9608	31	5	
	.9656	32	5	
	.9698	33	5	
	.9736	34	5	
	.9769	35	5	

Plot Power by the Number of Clusters

Graph the results Graph properties * Signaph properties * Signaph properties * Signaph results from power Nain Labels Plot Add plots Y axis X axis Titles Legend Overall By Dimensions Columns which define the y axis: Power Columns which define the y axis: Power Columns which define the x axis: Power Columns which define the y axis: Power Colu					halysis for a two-s	sample means	test in a CRD		_	
Graph properties * Image: Graph results from power Main Labels Plot Add plots Y axis X axis Titles Legend Overall By Dimensions Options Options Options Options Columns which define the x axis: Options Columns which define the x axis: Options Create plots for groups defined by columns: Options Create graphs for groups defined by columns: Options Swap x and y axes On not apply default x and y grid lines Replace graph if it already exists in memory Mare of graph, or stub if multiple graphs OK Cancel Submit 		Table	Graph	Iteration						
Image: Start in the start	Grap									
Main Labels Plot Add plots Y axis X axis Titles Legend Overall By Dimensions Options Options Options Options Columns which define the x axis: Options Create plots for groups defined by columns: Options Options Create subgraphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel Submit 		Grapł	h propertie	s *						
Dimensions power Columns which define the x axis: power Columns which define the x axis: power Options Create plots for groups defined by columns: Options Create graphs for groups defined by columns: Options Create graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel		[📰 Graph	results from	n power					×
Dimensions power Columns which define the x axis: power Columns which define the x axis: power Options Create plots for groups defined by columns: Options Create graphs for groups defined by columns: Options Replace graph if it already exists in memory OK Cancel			Main	Labels PI	lot Add plots	s Yaxis Xa	xis Titles	Legend	Overall By	
Columns which define the y axis: power Columns which define the x axis: Image: Columns which define the x axis: <td></td> <td></td> <td>Dime</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Dime							
power Options Columns which define the x axis: Options Create plots for groups defined by columns: Options Create subgraphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Swap x and y axes Options Do not apply default x and y grid lines Options stub if multiple graphs Replace graph if it already exists in memory OK					define the y axis:					
Create plots for groups defined by columns: Options Create subgraphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel								~	Options	
Create plots for groups defined by columns: Create subgraphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel			Colu	mns which d	define the x axis:					
 ✓ Options Create subgraphs for groups defined by columns: ✓ Options Create graphs for groups defined by columns: ✓ Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory Ø C 			K2					~	Options	
Create subgraphs for groups defined by columns: Options Create graphs for groups defined by columns: Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel Submit			Creat	e plots for g	roups defined by	columns:				
 ✓ Options Create graphs for groups defined by columns: ✓ Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory ②								~	Options	
Create graphs for groups defined by columns: Create graphs for groups defined by columns: Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel Submit			Creat	e subgraphs	s for groups defin	ed by column	s:		0 .::	
 ✓ Options Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory Ø Ø OK Cancel Submit 								~	Options	
Swap x and y axes Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory Image: Content of the second sec			Creat	e graphs for	r groups defined	by columns:		~	Ontions	
 Do not apply default x and y grid lines Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel Submit 								Ť	options	1
Name of graph, or stub if multiple graphs Replace graph if it already exists in memory OK Cancel			🗌 Swa	p x and y axe	es					
Replace graph if it already exists in memory Image: Concelement of the second secon			🗌 Do r	not apply de	fault x and y grid	lines				
OK Cancel Submit				ame of grapl	h, or stub if mult	iple graphs				
			Re	place graph	if it already exist	s in memory				
			0 B				ОК	Cancel	Submi	it
		L								
LIK Cancel Submit	B							ОК	Cancel	Submi


Estimated Power and Sample Size for the Fit of Structural Equation Models using Selected Web Apps

http://quantpsy.org/rmsea/rmsea.htm


http://timo.gnambs.at/en/scripts/powerforsem

https://webpower.psychstat.org/models/sem01/

http://quantpsy.org/rmsea/rmsea.htm

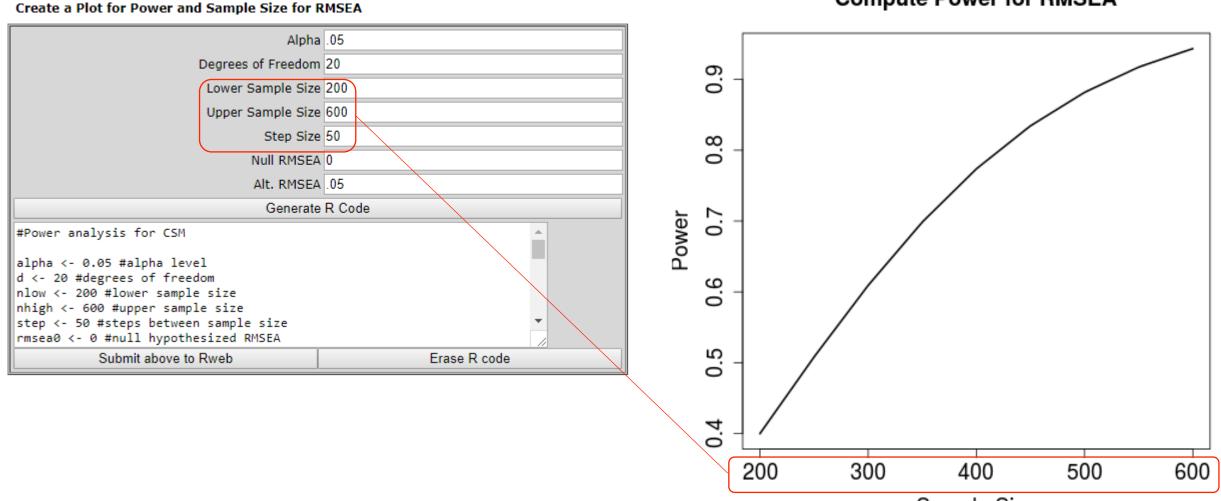
<u>http://timo.gnambs.at/en/scripts/powerforsem</u>

<u>https://webpower.psychstat.org/models/sem01/</u>

SEM based on RMSEA

Parameters (Help)				
Sample size	400			
Degrees of freedom	20			
RMSEA for H0	0			
RMSEA for H1	.05			
Significance level	.05			
Power				
Type of analysis	Close fit •			
Power curve	No power curve			
Note	SEM based on RMSEA			
Calculate				
Output				
Power for SEM based on RMSEA				
n df rmsea0 400 20 0				
URL: http://psych	nstat.org/rmsea			

SEM based on RMSEA


Parameters (Help)						
Sample size						
Degrees of freedom	20					
RMSEA for H0	0					
RMSEA for H1	.05					
Significance level	.05					
Power	.8					
Type of analysis	Close fit •					
Power curve	No power curve					
Note	SEM based on RMSEA					
Calculate Output						
Power for SEM based on RMSEA						
	420.2 20 0 0.05 0.8 0.05 URL: http://psychstat.org/rmsea					

Plotting Power Curves by Sample Size for Structural Equation Models

http://quantpsy.org/rmsea/rmsea.htm

https://webpower.psychstat.org/models/sem01/

<u>http://quantpsy.org/rmsea/rmseaplot.htm</u>

Compute Power for RMSEA

Sample Size

• <u>https://webpower.psychstat.org/models/sem01/</u>

SEM based on RMSEA

Parameters (Help) 0.9 200:600:50 Sample size Degrees of freedom 20 0.8 RMSEA for H0 0 0.7 RMSEA for H1 .05 Power Significance level .05 0.6 Power Type of analysis Close fit V 0.5 Power curve Show power curve **•** 0.4 Note SEM based on RMSEA 200 300 400 500 600

Power Curve

Calculate

Sample size

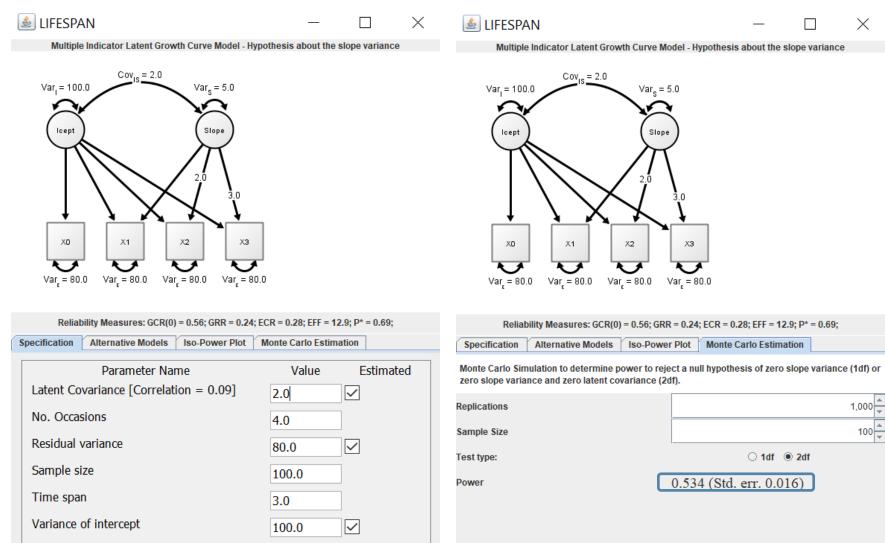
<u>https://webpower.psychstat.org/models/sem01/</u>

SEM based on RMSEA

Parameters (Help)						
Sample size	200:600:50					
Degrees of freedom	20					
RMSEA for H0	0					
RMSEA for H1	.05					
Significance level	.05					
Power						
Type of analysis	Close fit					
Power curve	Show power curve ▼					
Note	SEM based on RMSEA					

Output

Pov	ver fo	or S	SEM base	ed on RN	ISEA		
	n	df	rmsea0	rmseal	power	alpha	
	200	20	0	0.05	0.3997	0.05	
	250	20	0	0.05	0.5080	0.05	
	300	20	0	0.05	0.6091	0.05	
	350	20	0	0.05	0.6985	0.05	
	400	20	0	0.05	0.7737	0.05	
	450	20	0	0.05	0.8345	0.05	
	500	20	0	0.05	0.8818	0.05	
	550	20	0	0.05	0.9175	0.05	
	600	20	0	0.05	0.9436	0.05	
	\square						


URL: http://psychstat.org/rmsea

Power for Latent Growth Curve Models

http://www.brandmaier.de/lifespan/

• <u>http://www.brandmaier.de/lifespan/</u>

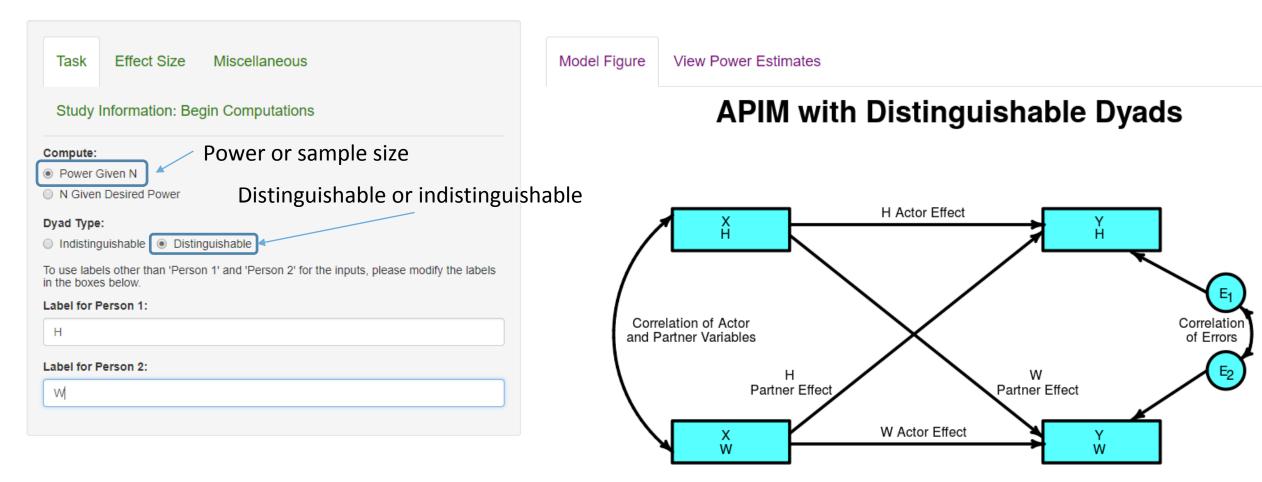
5.0

 \checkmark

Done

Indicators +

-


Run Stop

Power and Sample Size for the Actor-Partner Interdependence Model (APIM)

https://robert-a-ackerman.shinyapps.io/APIMPowerRdis/

https://robert-a-ackerman.shinyapps.io/APIMPowerRdis/

Power Analysis for the Actor-Partner Interdependence Model

https://robert-a-ackerman.shinyapps.io/ APIMPowerRdis/

Task Effect Size Miscellaneous	Model Figure View Power Estimates
Study Information: Begin Computations	APIM with Distinguishable Dyads
Effect Size Measure	
💿 Beta 💿 d 💿 partial r	
	X Person 1 Actor Effect Y Person 1 Person 1
Task Effect Size Miscellaneous	
Study Information: Begin Computations	Correlation of Actor and Partner Variables
Alpha	Person 1 Person 2
0.05	Partner Effect Partner Effect
Ratio of W Predictor Variance to H Predictor Variance	X Person 2 Actor Effect Y
1	Person 2 Person 2
Ratio of W Error Variance to H Error Variance	
1	

Task Effect Size Miscellaneous

Study Information: Begin Computations

Click the 'Compute Power!' button below when you are ready to conduct the analysis.

Compute Power!

Effect Size Value of the Actor Effect for H

0.25

Effect Size Value of the Actor Effect for W

0.25

Effect Size Value of the Partner Effect for H

0.15

Effect Size Value of the Partner Effect for W

0.15

Correlation of the Actor and Partner Variables

0.3

Correlation of the Errors

0.3

Number of Dyads with Complete Data (at least 10)

100

Number of H Singles (if non-zero, at least 5)

0

Number of W Singles (if non-zero, at least 5)

Model Figure View Power Estimates

	Effect	Power	Ν	df	Beta	r	partial r	ncp
Actor Effect for H	.250	.692	100	97	.250	.295	.245	2.486
Actor Effect for W	.250	.692	100	97	.250	.295	.245	2.486
Partner Effect for H	.150	.315	100	97	.150	.225	.150	1.492
Partner Effect for W	.150	.315	100	97	.150	.225	.150	1.492
Difference in Actor Effects	.000	.050						0.000
Difference in Partner Effects	.000	.050						0.000
Average of Actor Effects	.250	.920						3.368
Average of Partner Effects	.150	.524						2.021

The task is to determine the levels of power available to detect the actor and partner effects for an Actor-Partner Interd sample size and alpha.

Alpha is set to .050. N refers to the number of dyads. There are 100 dyads (and 0 H singles and 0 W singles).

The measure of effect size is beta, the standardized regression coefficient. The correlation between the two members' the non-centrality parameter or the regression coefficient divided by its standard error.

Truncated

on the slide

There is .692 power to detect an actor effect for H of size .250 (i.e., a beta of .250 or a partial r of .245).

There is .692 power to detect an actor effect for W of size .250 (i.e., a beta of .250 or a partial r of .245).

There is .315 power to detect a partner effect for H of size .150 (i.e., a beta of .150 or a partial r of .150).

There is .315 power to detect a partner effect for W of size .150 (i.e., a beta of .150 or a partial r of .150).

There is .050 power to detect a difference between the H and W actor effects of size .000.

There is .050 power to detect a difference between the H and W partner effects of size .000.

There is .920 power to detect average of the H and W actor effects of size .250.

There is .524 power to detect average of the H and W partner effects of size .150.

0

Power and Sample Size for Simple Mediation Analysis

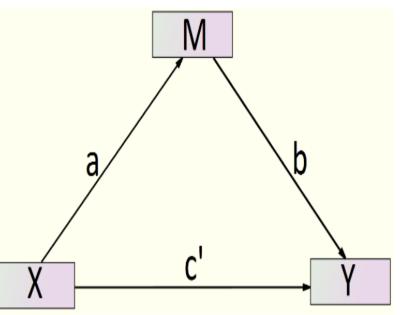
https://davidakenny.shinyapps.io/MedPower

https://schoemanna.shinyapps.io/mc_power_med

https://webpower.psychstat.org/models/diagram

<u>https://davidakenny.shinyapps.io/MedPower</u>

Power and N Computations for Mediation


	E
Compute Now!	С
Determine:	а
Power given Sample Size	b
Sample size given desired level of power	C
ample Size	a
100	Alp
ffect Size Measure	Ν
🤋 Beta 🔘 partial r	
ffect of X on M (path a)	
.400	
ffect of M on Y (path b)	
.381	
ffect of X on Y (path c')	
.048	
Ipha	

maintaining MedPower.

Effect	Beta	Partial r	Power	Ν
c (total)	.200	.200	.518	100
а	.400	.400	.990	100
b	.381	.356	.961	100
c' (direct)	.048	.048	.076	100
ab (indirect)	.152		.951	100

Alpha for all power calculations set to .050. Effects (a, b, and c') are Betas.

Mediation Diagram

<u>https://schoemanna.shinyapps.io/mc_power_med</u>

Monte Carlo Power Analysis for Indirect Effects

Written by Alexander M. Schoemann (Contact), Aaron J. Boulton, & Stephen D. Short

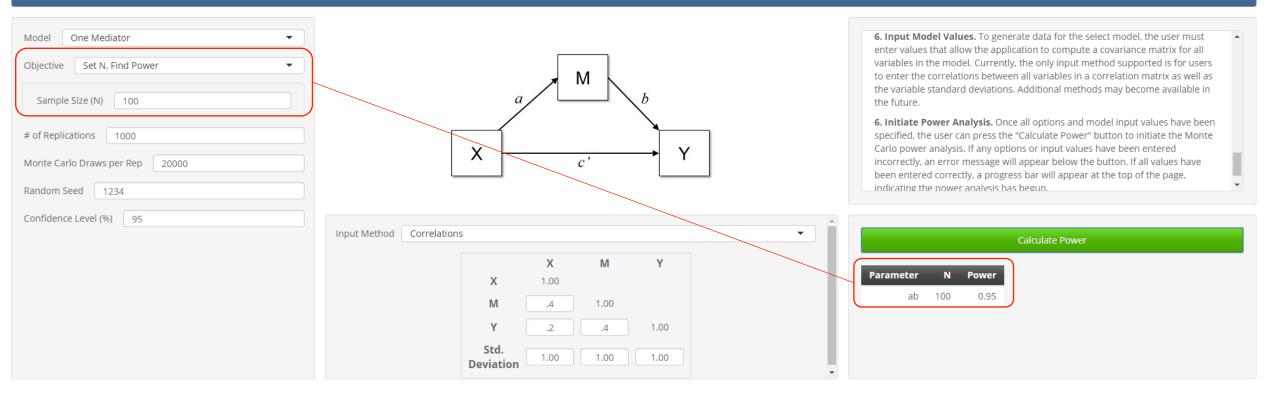
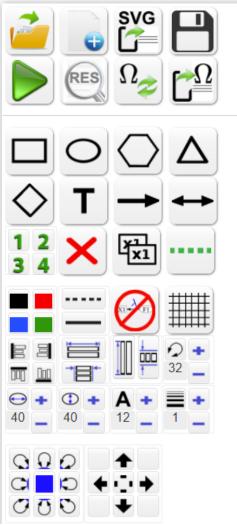
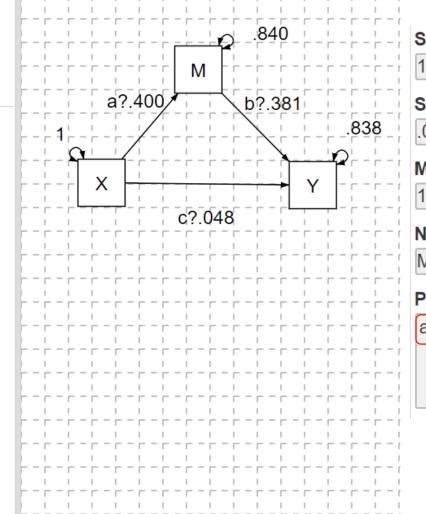




Diagram based Power analysis through Monte Carlo simulation (Diagram input)

<u>https://webpower.psychstat.org/models/diagram/</u>

Sample Size:	
100	
Significance level:	
.05	
MC replications:	
1000	
Notes:	
MC simulation using	
Power parameters:	
ab := a*b	

"Use with caution because the application ... needs more testing."

Diagram based Power analysis through Monte Carlo simulation (Text Output)

Basic information:

	on method				ML			
Standard	error			st	andard			
Number o	f requested	d replica	tions		1000			
Number o	f successf	ul replic	ations		1000			
Sample s	ize				100			
		True	Estimate	MSE	SD	Power	Power.se	Coverage
Regression	is:							
м ~								
x	(a)	0.400	0.398	0.092	0.095	0.991	0.003	0.933
У ~								
М	(b)	0.381	0.378	0.100	0.101	0.959	0.006	0.940
х	(c)	0.048	0.049	0.100	0.108	0.096	0.009	0.934
Intercepts	:							
М		0.000	-0.002	0.091	0.090	0.043	0.006	0.957
Y		0.000	-0.002	0.091	0.091	0.049	0.007	0.951
х		0.000	0.000	0.099	0.100	0.049	0.007	0.951
Variances:								
M		0.840	0.828	0.117	0.116	1.000	0.000	0.925
Y		0.838	0.815	0.115	0.119	1.000	0.000	0.916
х		1.000	0.987	0.140	0.140	1.000	0.000	0.938
Indirect/M	Mediation e	ffects:						
ab		0.152	0.151	0.054	0.054	0.900	0.009	0.925

Using Simulation in Mplus to Estimate Power (Simple Mediation Analysis)

Simulation for Power Estimation—Step 1: Estimate Standardized Model Parameters from Correlations

TITLE: Step 1: Estimate star	ndardized mediation			Estimate	S.E.	Est./S.E.	P-Value
parameters from correlation	n matrix input	М	ON				
DATA: FILE IS medcorr.dat;	! Data file	x		0.400	0.092	4.342	0.000
NOBSERVATIONS = 100;	! Sample size	Y	ON				
TYPE=CORRELATION;	! Correlation matrix input	М		0.381	0.100	3.794	0.000
VARIABLE: NAMES ARE x m y;	! Variable names	x		0.048	0.100	0.474	0.635
ANALYSIS: ESTIMATOR IS GLS;	! Generalized least squares	Varia	nces				
MODEL: x@1;	! Fix variance to 1	x		1.000	0.000	999.000	999.000
m ON x;	! First-stage effect	Resid	ual Varianc	es			
y ON m;	! Second-stage effect	М		0.840	0.119	7.035	0.000
y ON x;	! Direct effect	Y		0.838	0.119	7.036	0.000
MODEL INDIRECT:	! Mediation parameters						
y IND x;	! Indirect effect	Tota	1	0.200	0.098	2.031	0.042
OUTPUT: SAMPSTAT;	! Descriptive statistics	Indi	rect	0.152	0.053	2.857	0.004
STDYX;	! Standardized results	Dire	ct	0.048	0.100	0.474	0.635

medcorr.dat

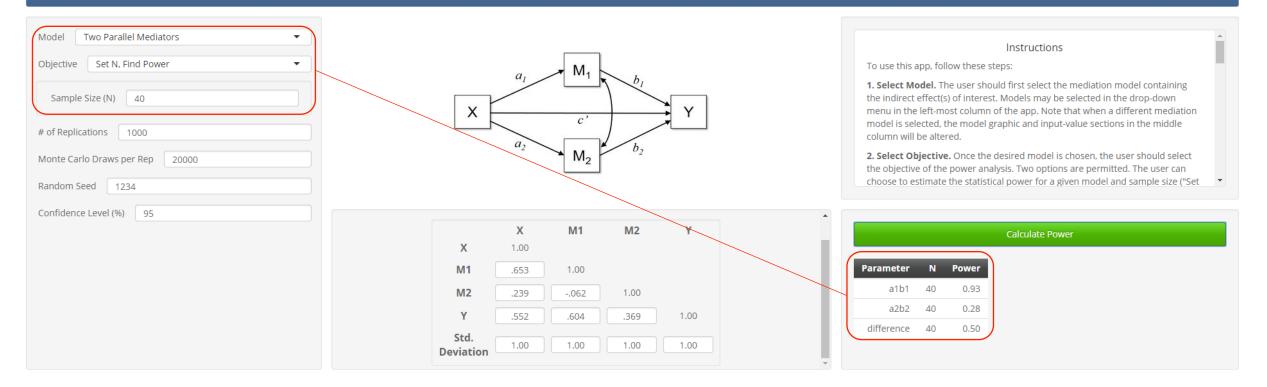
1 .4 1 .2 .4 1

Simulation for Power Estimation—Step 2: Code to Estimate Power for Mediation Parameters

Y ON M 0.381 0.100 3.794 0.000 X 0.048 0.100 0.474 0.635 Variances 1.000 0.000 999.000 999.000 Residual Variances 0.840 0.119 7.035 0.000 Y 0.838 0.119 7.036 0.004 Direct 0.048 0.100 0.474 0.635 M 0.200 0.098 2.031 0.042 MoDel POPULATION ! First stage effect x01 m*.840 y*.838; ! Variances ANALYSIS: ESTIMATOR IS GLS; ! Generalized least MODEL IS NOMEANSTRUCTURE; ! Omit mean structur MODEL: ' ON x*.048; ! Direct effect Y ON x*.048; ! Direct effec						
X 0.400 0.092 4.342 0.000 Y ON 0.381 0.100 3.794 0.000 X 0.048 0.100 0.474 0.635 Variances 1.000 0.000 999.000 999.000 X 0.840 0.119 7.035 0.000 Y 0.838 0.119 7.036 0.000 Y 0.838 0.119 7.036 0.000 Y 0.838 0.119 7.036 0.000 Y 0.381 0.003 0.042 MODEL POPULATION: ! Population model Y 0.838 0.119 7.036 0.000 ! Population model Y 0.840 0.119 7.036 0.000 ! Population model Y 0.838 0.119 7.036 0.004 Population model ! Variances Montect 0.152 0.053 2.857 0.004 Population model ! Population model Direct 0.048 0.100 0.474 0.635 Point mean structur MODEL IN DIRECT: <td></td> <td>Estimate</td> <td>S.E. E</td> <td>st./S.E.</td> <td>P-Value</td> <td>TITLE: Step 2: Simulate mediation parameters</td>		Estimate	S.E. E	st./S.E.	P-Value	TITLE: Step 2: Simulate mediation parameters
Y ON M 0.381 0.100 3.794 0.000 NAMES ARE x m y; ! Variable names M 0.048 0.100 0.474 0.635 NOBSERVATIONS ARE 100; ! Sample size Variances 1.000 0.000 999.000 999.000 Residual Variances ! Number of replicat M 0.840 0.119 7.035 0.000 ! Variable names Y 0.838 0.119 7.036 0.000 ! Direct effect Y 0.838 0.119 7.036 0.000 ! Variances modified 0.200 0.098 2.031 0.042 mon x*.400; ! First stage effect Indirect 0.152 0.053 2.857 0.004 MODEL IS NOMEANSTRUCTURE; ! Omit mean structur Direct 0.048 0.100 0.474 0.635 ! Direct effect Y ON x*.048; ! Direct effect ! Direct effect ! Direct effect MODEL IS NOMEANSTRUCTURE; ! Omit mean structur ! Direct effect Y ON x*.400; ! First stage effect ! Second stage effect Y ON x*.400; ! First	M ON					to obtain estimated power
M 0.381 0.100 3.794 0.000 X 0.048 0.100 0.474 0.635 Variances 1.000 0.000 999.000 999.000 Residual Variances 0.840 0.119 7.035 0.000 Y 0.838 0.119 7.036 0.000 Y 0.838 0.119 7.036 0.000 Total 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 MODEL IS NOMEANSTRUCTURE; ! Omit mean structure MODEL: ! Omit mean structure MODEL: ! Omit mean structure Model IS NOMEANSTRUCTURE; ! Omit mean structure MODEL: ! Omit mean structure MODEL INDIRECT: ! Perst stage effect </td <td>x</td> <td>0.400</td> <td>0.092</td> <td>4.342</td> <td>0.000</td> <td>MONTECARLO: ! Monte Carlo Simulation</td>	x	0.400	0.092	4.342	0.000	MONTECARLO: ! Monte Carlo Simulation
X 0.048 0.100 0.474 0.635 Variances 1.000 0.000 999.000 999.000 Residual Variances 0.840 0.119 7.035 0.000 Y 0.838 0.119 7.036 0.000 Y 0.838 0.119 7.036 0.000 M 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 WODEL IS NOMEANSTRUCTURE; ! Omit mean structur MODEL IS NOMEANSTRUCTURE; ! Omit mean structur MODEL IS NOMEANSTRUCTURE; ! Direct effect Y ON x*.048; ! Direct effect Y ON x*.400; ! First stage effect Y ON	Y ON					NAMES ARE x m y; ! Variable names
Variances 1.000 0.000 999.000 999.000 NREPS=1000; ! Number of replicat M 0.840 0.119 7.035 0.000 999.000 MODEL POPULATION: ! Population model Y 0.838 0.119 7.036 0.000 MODEL POPULATION: ! Population model Y 0.838 0.119 7.036 0.000 Total 0.200 0.098 2.031 0.042 m MADEL STIMATOR IS GLS; ! Generalized least Jirect 0.048 0.100 0.474 0.635 MODEL IS NOMEANSTRUCTURE; ! Omit mean structure Y ON x*.048; ! Direct effect ! Second stage effect ! Second stage effect WODEL VON x*.048; ! Direct effect ! Omit mean structure Y ON x*.048; ! Direct effect ! Direct effect Y ON x*.048; ! Direct effect ! Second stage effect WODEL ! Direct effect ! Direct effect Y ON x*.048; ! Direct effect ! Direct effect Y ON x*.048; ! Direct effect ! Second stage effect	М	0.381	0.100	3.794	0.000	NOBSERVATIONS ARE 100; ! Sample size
X 1.000 0.000 999.000 999.000 MODEL POPULATION: ! Population model M 0.840 0.119 7.035 0.000 999.000 MODEL POPULATION: ! Population model Y 0.838 0.119 7.036 0.000 mon x*.048; ! Eirst stage effect Total 0.200 0.098 2.031 0.042 mon x*.400; ! First stage effect Indirect 0.152 0.053 2.857 0.004 MODEL IS NOMEANSTRUCTURE; ! Omit mean structur MODEL: ! Analysis model ! ! Direct effect V ON x*.048; ! Direct effect ! Direct effect MODEL INDIRECT: ! Analysis model	X	0.048	0.100	0.474	0.635	SEED = 20160129; ! Seed
Residual Variances 0.840 0.119 7.035 0.000 Y 0.838 0.119 7.036 0.000 Total 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 WODEL IS NOMEANSTRUCTURE; ! Omit mean structure MODEL: ! Direct effect Y ON x*.048; ! Direct effect Y ON x*.048; ! Variances MODEL INDIRECT: ! Mediation analysis	Variances					NREPS=1000; ! Number of replications
M 0.840 0.119 7.035 0.000 Y 0.838 0.119 7.036 0.000 Total 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 WODEL IS NOMEANSTRUCTURE; ! Omit mean structure MODEL: ! Analysis model Y ON m*.381; ! Second stage effect WODEL: ! Analysis model Y ON m*.381; ! Second stage effect MODEL INDIRECT: ! Variances	x	1.000	0.000	999.000	999.000	MODEL POPULATION: ! Population model
Y 0.838 0.119 7.036 0.000 Total 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 WODEL IS NOMEANSTRUCTURE; ! Omit mean structure is model Y Y Y Y 0.048 0.100 0.474 0.635 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Residual Variances	5				y ON x*.048; ! Direct effect
 Total 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 Yariances MODEL IS NOMEANSTRUCTURE; Variances MODEL: Variances MODEL: Variances MODEL: Variances Variances NODEL: Variances Variances Variances NODEL: Variances Variances Variances NODEL: Variances NODEL: Variances Variances NODEL: Variances Variances NODEL: Variances NODEL: Variances NODEL: Variances Variances NODEL: Variances Variances NODEL: Variances NODEL: Variances Variances NODEL: Variances NODEL: Variances NODEL INDIRECT: Variances	M	0.840	0.119	7.035	0.000	y ON m*.381; ! Second stage effect
Total 0.200 0.098 2.031 0.042 Indirect 0.152 0.053 2.857 0.004 Direct 0.048 0.100 0.474 0.635 WODEL IS NOMEANSTRUCTURE; ! Omit mean structure MODEL: ! Analysis model Y ON x*.048; ! Direct effect Y ON x*.400; ! First stage effect MODEL INDIRECT: ! Variances	Y	0.838	0.119	7.036	0.000	m ON x*.400; ! First stage effect
Indirect0.1520.0532.8570.004MODEL IS NOMEANSTRUCTURE;! Omit mean structurDirect0.0480.1000.4740.635MODEL:! Analysis modely ON x*.048;! Direct effecty ON x*.048;! Second stage effectm ON x*.400;! First stage effectx@1 m*.840 y*.838;! VariancesMODEL INDIRECT:! Mediation analysis						x@1 m*.840 y*.838; / Variances
Direct 0.048 0.100 0.474 0.635 MODEL: ! Analysis model MODEL: y ON x*.048; ! Direct effect y ON x*.400; ! Second stage effect x@1 m*.840 y*.838; ! Variances MODEL INDIRECT: ! Mediation analysis	Total	0.200	0.098	2.031	0.042	ANALYSIS: ESTIMATOR IS GLS; ! Generalized least square
y ON x*.048; y ON x*.048; y ON m*.381; m ON x*.400; x@1 m*.840 y*.838; MODEL INDIRECT: ! Direct effect ! Second stage effect ! Variances ! Variances ! Mediation analysis	Indirect	0.152	0.053	2.857	0.004	MODEL IS NOMEANSTRUCTURE; ! Omit mean structure
y ON m*.381; ! Second stage effect m ON x*.400; ! First stage effect x@1 m*.840 y*.838; ! Variances MODEL INDIRECT: ! Mediation analysis	Direct	0.048	0.100	0.474	0.635	MODEL: ! Analysis model
m ON x*.400; ! First stage effect x@1 m*.840 y*.838; ! Variances MODEL INDIRECT: ! Mediation analysis						y ON x*.048; ! Direct effect
x@1 m*.840 y*.838; ! Variances MODEL INDIRECT: ! Mediation analysis						y ON m*.381; ! Second stage effect
MODEL INDIRECT: ! Mediation analysis						m ON x*.400; ! First stage effect
-						x@1 m*.840 y*.838; / ! Variances
y IND x; ! Indirect effect						MODEL INDIRECT: ! Mediation analysis
						y IND x; ! Indirect effect

Simulation for Power Estimation—Step 2: Mediation Parameter Power Estimates

			ESTIMATES		S. E.	M. S. E. 95% % Sig
		Population	Average	Std. Dev.	Average	Cover Coeff
Y	ON					
Х		0.048	0.0497	0.0991	0.0995	0.0098 0.954 <u>0.073</u> Second
М		0.381	0.3812	0.1032	0.1001	0.0106 0.938 0.967 🖌 Stage
М	ON					
Х		0.400	0.3999	0.0913	0.0914	0.0083 0.940 0.992 🔨 First
Varia	nces					Stage
Х		1.000	1.0000	0.0000	0.0000	0.0000 1.000 0.000
Resid	ual Varia	nces				
М		0.840	0.8357	0.1186	0.1188	0.0141 0.940 1.000
Y		0.838	0.8218	0.1247	0.1168	0.0158 0.909 1.000
• • •	_					0 0007 0 025 0 542 Total
Tota	1	0.200	0.2022	0.0983	0.0976	$0.0097 \ 0.955 \ 0.542$
Indi	rect	0.152	0.1525	0.0549	0.0541	0.0030 0.934 0.914 Mindirect
Dire	ct	0.048	0.0497	0.0991	0.0995	0.0098 0.954 0.073 🔶 Direct


Power and Sample Size Calculation for Extended Mediation Analysis

https://schoemanna.shinyapps.io/mc_power_med

<u>https://schoemanna.shinyapps.io/mc_power_med</u>

Two Parallel Mediators: Standardized Effects

Monte Carlo Power Analysis for Indirect Effects Written by Alexander M. Schoemann (Contact), Aaron J. Boulton, & Stephen D. Short

Simulation for Power Estimation—Step 1: Estimate Standardized Population Mediation

Mediation parameters	
; ! File name	Y
! Correlations	
! Sample size	
! Variable names	
! GLS estimation	м
! Mediation model	
! Second stage effects	м
! First stage effects	
! Direct effect	м
! Mediator covariance	
! Indirect effects	v
! Model constraint	
! Difference parameter	R
! Output	
	<pre>! Correlations ! Sample size ! Variable names ! GLS estimation ! Mediation model ! Second stage effects ! First stage effects ! Direct effect ! Mediator covariance ! Indirect effects ! Model constraint ! Difference parameter</pre>

Estimate S.E. Est./S.E. P-Value ON Y М1 0.570 0.151 3.776 0.000 0.118 0.383 3.254 0.001 M2 0.155 0.567 0.571 х 0.088 м1 ON Х 0.121 5.384 0.653 0.000 M2 ON 0.239 1.537 Х 0.156 0.124 м1 WITH M2 -0.2180.123 -1.7750.076 Variances 0.226 х 1.000 4.415 0.000 Residual Variances М1 0.574 0.130 4.416 0.000 0.214 4.416 М2 0.943 0.000 0.466 0.105 4.416 Y 0.000 New/Additional Parameters 0.045 DIFF 0.281 0.140 2.003

twomedcorr.dat

1.000			
0.653	1.000		
0.239	-0.062	1.000	
0.552	0.604	0.369	1.000

Step 2: Simulate to Estimate Power for Model

	aram	eters	S.E.	Est./S.E.	P-Value	TITLE: Step 2: Simulate me	diation parameters
Y	ON					to obtain estimated power	:
M1		0.570	0.151	3.776	0.000	MONTECARLO:	! Monte Carlo Simulation
M2		0.383	0.118	3.254	0.001	NAMES ARE x m1 m2 y;	! Variable names
х		0.088	0.155	0.567	0.571	NOBSERVATIONS ARE 40;	! Sample size
M1	ON					SEED = 20160129;	! Seed
х		0.653	0.121	5.384	0.000	NREPS=1000;	! Number of replications
M2	ON					MODEL POPULATION:	! Population model
х		0.239	0.156	1.537	0.124	y ON m1*.570;	! Second stage mediator 1
M1	WITH					y ON m2*.383;	! Second stage mediator 2
M2		-0.218	0.123	-1.775	0.076	m1 ON x*.653;	! First stage mediator 1
Variance	S					m2 ON x*.239;	! First stage mediator 2
х		1.000	0.226	4.415	0.000	y ON x*.088;	! Direct effect
Residual	Variances					m1 WITH m2*218;	! Mediator covariance
M1		0.574	0.130	4.416	0.000	x@1 m1*.574 m2*.943 y*.46	667! Variances
M2		0.943	0.214	4.416	0.000	ANALYSIS: ESTIMATOR IS GLS	; ! GLS estimation
Y		0.466	0.105	4.416	0.000	MODEL IS NOMEANSTRUCTURE;	! No means or intercepts
New/Addit	ional Paran	neters				MODEL:	! Analysis model
DIFF		0.281	0.140	2.003	0.045	y ON m1*.570 (b1);	! Second stage mediator 1
						y ON m2*.383 (b2);	! Second stage mediator 2
						m1 ON x*.653 (a1);	! First stage mediator 1
						m2 ON x*.239 (a2);	! First stage mediator 2
						у ON x*.088;	! Direct effect
						m1 WITH m2*218;	! Mediator covariance
						x@1 m1*.574 m2*.943 y*.46	66;/! Variances
						MODEL INDIRECT:	! Mediation analysis
						y IND x;	! Indirect effect
						MODEL CONSTRAINT:	! Model constraint
						NEW(diff*.281);	! Difference
						diff=(a1*b1)-(a2*b2);	!

Mplus Output Estimating Power for Model

Para	ameter	^ S	ESTIMATES		S. E.	M. S. E.	95% % Sig	
	Pop	pulation	Average	Std. Dev.	Average		Cover Coeff	Power
Y	ON							Second stage
M1		0.570	0.5709	0.1530	0.1501		0.935 0.960	
M2		0.383	0.3860	0.1274	0.1183		0.931 0.870	effects
x		0.088	0.0876	0.1591	0.1526	0.0253	0.933 0.102	Direct effect
M1	ON							Direct effect
x		0.653	0.6470	0.1258	0.1186	0.0159	0.918 0.999	First stage
M2	ON						◄	
x		0.239	0.2477	0.1583	0.1508	0.0251	0.910 0.371	effects
M1	WITH							
M2		-0.218	-0.2095	0.1211	0.1193	0.0147	0.935 0.419	
Variance	es							
X		1.000	1.0000	0.0000	0.0000	0.0000	1.000 0.000	
Residua	l Variances							
M1		0.574	0.5637	0.1335	0.1276	0.0179	0.910 1.000	
M2		0.943	0.9121	0.2202	0.2065	0.0494	0.880 1.000	
Y		0.466	0.4290	0.1026	0.0972	0.0119	0.859 1.000	
New/Addi	tional Param	neters						Difference between
DIFF		0.281	0.2722	0.1457	0.1426	0.0213	0.934 0.479	— the indirect effects
								via the 2 mediators
Effects :	from X to Y							
Total		0.552	0.5533	0.1375	0.1302	0.0189	0.911 0.989	Total effect
Tot ind	direct	0.464	0.4657	0.1390	0.1371	0.0193	0.939 0.972	
Specifi	c indirect							Indirect effects
M1		0.372	0.3690	0.1226	0.1206		0.930 0.942	
M2		0.092	0.0968	0.0724	0.0684	0.0053	0.912 0.199	

Summarizing

- Background and statistical foundations of power analysis
- Software tools for power analysis
 - General purpose commercial statistical software (Stata, SAS, SPSS)
 - Freely available software (G*Power, PS)
 - Web Apps
- Formula-based vs. general simulation approaches to power analysis

Related issues and methods

- Confidence Intervals (CI) and Accuracy in Parameter Estimation (AIPE)
- Effect size (ES) estimation and conversion
- Power for categorical, count, or censored variables
- Power for ANOVA models
- Power for tests of interaction and moderation
- Power for complex multilevel models
- Power for equivalence and non-inferiority testing
- Power and meta-analysis
- Power analysis and sensitivity analysis

Learning More about Statistical Power Analysis

- Aberson, C. L. (2011). Applied Power Analysis for the Behavioral Sciences. Routledge.
- Davey, A. (2009). Statistical Power Analysis with Missing Data: A Structural Equation Modeling Approach. Routledge.
- Hedberg, E. C. (2017). *Introduction to Power Analysis: Two-Group Studies*. SAGE Publications.
- Liu, X. S. (2013). Statistical Power Analysis for the Social and Behavioral Sciences: Basic and Advanced Techniques. Routledge.
- Moerbeek, M., & Teerenstra, S. (2015). Power Analysis of Trials with Multilevel Data. CRC Press.
- Murphy, K. R., Myors, B., & Wolach, A. (2014). Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothesis Tests (Fourth Ed.). Routledge.
- Ryan, T. P. (2013). *Sample Size Determination and Power*. John Wiley & Sons.

Thank You!

Questions?