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Winter wheat production in western Europe provides one 
of the highest-yielding staple food sources worldwide; 
however, realization of yield potential relies heavily on 

mineral fertilizer and chemical plant protection. Over the past 
50 years, breeding of wheat and other major crops has focused 
primarily on selection for high grain yield in high-input cropping 
systems, which are frequently associated with ecological sustain-
ability penalties1–4. For example, it is estimated that less than 50% 
of applied nitrogen is recovered in harvested crops5,6, while up 
to 68% of global N2O emissions from croplands are attributed to 
nitrogen fertilization of wheat, maize and rice7. To feed the rapidly 
growing world population, cereal production must continue to 
increase1, but environmental pollution and atmospheric emissions 
associated with excessive agrochemical inputs must simultaneously  
be reduced2,4.

Despite confirmation that modern breeding maintains genetic 
diversity8,9, a broadly held popular perception persists that intense 
selection during breeding of elite cultivars for high performance 
under optimal cropping conditions has depleted genetic variants 
required for adaptation to suboptimal environments or reduced-
input cropping systems. For example, a recent study10 suggested that 
climate resilience in European wheat is declining, based on observa-
tions that modern cultivars show more homogeneous responses to 
climatic uncertainty and variability. Although genetic data were not 
investigated, these observations were attributed to genetic erosion 
of allele diversity as a result of breeding10.

Loss of adaptive diversity to secure crop performance in subop-
timal conditions would have serious implications, particularly in 
the face of increasing political and environmental constraints on 
agrochemical inputs, along with climatic fluctuations impacting 
yield stability11. However, analyses focusing only on environmen-
tal responses, but ignoring genetic effects on yield performance10, 
are unsuitable to draw conclusions about breeding potential12. To 
understand adaptive diversity associated with the effects of breed-
ing progress, it is essential to evaluate genetic variance in empirical 
studies of cultivar performance and contributing traits in diverse, 
but clearly defined, growth environments.

Results
Assessing 50 years of wheat breeding progress under contrasting 
input scenarios. In this study, we present one of the largest analy-
ses to date of genetic and phenotypic changes associated with long-
term breeding progress in a major global crop. We investigated a 
panel of elite winter wheat cultivars released during the past 50 years 
in western Europe, particularly Germany, where mean grain yield 
per production area ranked consistently among the highest in the 
world during this period. The panel included many of the most 
widely grown wheat cultivars during their period of release, includ-
ing different grain quality classes (Supplementary Table 1). Grain 
yield, yield components, harvest index, plant height, plant bio-
mass, flowering behaviour, grain quality characteristics, disease 
resistances and physiological parameters, including leaf area and  
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photosynthetic potential, were assessed in large-scale field trials, 
in which cultivars representing five decades of breeding progress 
were planted side by side in experiments spanning multiple loca-
tions, years and treatments. To address questions about the effects 
of breeding on performance under reduced agrochemical applica-
tions, the entire cultivar panel was grown in a main trial series over 
two growing seasons, at six distinct locations, under three crop-
ping intensities side by side at each location with strongly contrast-
ing levels of nitrogen supply (soil mineral N + N fertilization) and 
plant protection chemicals (see Methods; Supplementary Tables 2 
and 3). A high-intensity treatment, comprising nitrogen supply of 
220 kgN ha−1 (soil mineral N + N fertilization) along with best-prac-
tice fungicide, insecticide and growth regulator applications (HiN/
HiF treatment), reflected standard conditions for intensive wheat 
production in western Europe. This high-intensity variant was 
directly compared with a fungicide-free treatment with the same 
level of nitrogen fertilization (HiN/NoF) and a fungicide-free treat-
ment with only 110 kgN ha−1 (LoN/NoF). Moreover, performance 
comparisons of the full cultivar panel under drought stress versus 
irrigated conditions (HiN/HiF) were also added at one location 
characterized by low rainfall and light soils.

For validation, we further tested a representative subset of 42 cul-
tivars in a full treatment-factorial design, assessing yield responses 
to all combinations of the two nitrogen levels and the two fungicide 
variants in a total of eight independent environments, spanning 
five locations and four growing seasons (2014–2015 to 2017–2018). 
The cultivars in the validation panel were selected to be genetically 
and temporally representative for the larger test panel across all five 
decades of cultivar release. In addition to the three treatments from 
the main trials, the validation trials also included a fourth variant 
with best-practice fungicide and 110 kgN ha−1 (LoN/HiF), which is 
unlikely to be applied in practical farming but addresses the poten-
tially compounding effects of nitrogen and fungicide applications 
in the main experiment. Furthermore, at four of the locations in 
2016–2017 and/or 2017–2018, the additional trials also included 
eight new cultivars, seven of which were registered between 2014 
and 2016, to evaluate whether breeding trends observed in the main 
data set continued into subsequent years. Full details of all field tri-
als, phenotypic measurements and data processing are provided in 
the Methods and Supplementary Tables 3 and 4, while the composi-
tion of the validation panel is indicated in Supplementary Table 1.

In total, the main trials and validation experiment comprised 
18,844 full-sized yield plots, in which a total of 209,806 trait values 
were measured. These extensive, multi-location and multi-season 
field evaluations provided detailed insight into the long-term effect 
of intense phenotypic selection for maximum grain yield, under 
optimal cropping conditions, on the adaptive capacity of elite wheat 
cultivars to production scenarios with reduced agrochemical inputs 
or biotic and abiotic stress (Figs. 1 and 2). By comparing patterns 
of linkage disequilibrium (LD), calculated from 8,710 polymorphic, 
genome-wide single-nucleotide polymorphism (SNP) markers 
(see Methods; Supplementary Data File 1), we also assessed how 
breeding has impacted population genetic parameters over time in 
European winter wheat.

For each of the two different trial series, a trial-specific linear 
mixed model (see Methods, equations (1) and (5)) was used to 
estimate the adjusted mean phenotype values for each trait inves-
tigated, in each treatment, for each cultivar, across all years, loca-
tions and replicates in the respective trial (Supplementary Table 5). 
Supplementary Fig. 1 and Supplementary Table 6 describe the vari-
ance components and broad sense heritability for all assessed traits, 
estimated by a fully random model (Methods, equation (2)) with 
standard errors calculated according to Methods, equation (3)13.

Recent cultivars outperform older cultivars under both high-
input and low-input scenarios. Based on robust phenotype data 

from large-scale field experiments, the results of our study show that 
modern cultivars consistently perform best under both high and 
low agrochemical input. Also, genome-wide SNP data indicate that 
genetic diversity was not reduced in European wheat cultivars over 
the past five decades of breeding progress. An extended description 
of the results is provided as Supplementary Information. All traits 
investigated showed a low residual (error) variance, except for the 
total plant biomass and the number of spikes per m2, which were 
measured on manually harvested samples, and radiation use effi-
ciency, which is technically challenging to measure and was only 
assessed at one location. The very high proportion of explained 
variance for all other assessed traits, along with the correspondingly 
low proportion of variance explained by replicates and sub-blocks 
(with the exception of powdery mildew infection), indicate a high 
overall accuracy of the phenotyping and uniformity of the experi-
mental conditions.

Cultivar × environment and cultivar × intensity interactions 
showed small effects on grain yield in both trials (1–4% of all 
explained variance). For most other traits, these interactions were 
also considerably lower than the variance explained solely by the 
cultivar. The high genetic variance in relation to the variance caused 
by interactions, in combination with the large size of the experi-
ment, resulted in high broad-sense heritabilities (H2; Supplementary 
Fig. 1 and Supplementary Table 6) ranging from H2 = 0.63 for  
green-canopy duration to H2 = 0.94 for plant height. Heritability  
for grain yield was H2 = 0.88 in the main trial and H2 = 0.90 in the 
validation trial.

We found strong genetic correlations (rg > 0.60) for all pair-
wise comparisons between treatments for individual traits 
(Supplementary Fig. 2). Highly significant relationships (Pearson 
product moment correlation, P < 0.001) were seen within and 
between all treatments in both the main trial and the validation 
experiment (Supplementary Fig. 3). These results confirm a major 
contribution of the genotype to performance under all treat-
ments (Supplementary Table 6). The number of kernels per m2, 
the number of kernels per spike, total plant biomass, nitrogen use 
efficiency (NUE) and stripe rust resistance showed the highest posi-
tive relationships with grain yield under all tested intensity levels 
(Supplementary Fig. 2 and Supplementary Tables 7–9), whereas 
plant height showed a high negative correlation to grain yield under 
high nitrogen fertilization. For each of these traits, incremental 
genetic gain over time was demonstrated by strong linear improve-
ment of cultivar performance in relation to the year of cultivar 
release, under all treatments, both in the main trial (Supplementary 
Fig. 4) and for grain yield in the validation trial (Supplementary  
Fig. 5). Genetic gains for grain yield were consistent across treat-
ments regardless of the baking quality classification (Supplementary 
Fig. 6 and Supplementary Table 7), despite the overall negative cor-
relation of protein content with grain yield (R2 = 0.58) in the high-
intensity treatment. As a consequence, total protein yield per ha and 
NUE increased over time under all treatments in all grain quality 
classes (Supplementary Fig. 6). The considerably lower thousand-
kernel weight and NUE under the HiN/NoF treatment than under 
the HiN/HiF treatment reflects the strong difference in yield (in 
particular, seed filling) without fungicide applications due to patho-
gen infection (affecting the numerator in the NUE calculation, 
the harvested nitrogen). In the LoN/NoF treatment, this effect is 
negated by the overriding difference in the level of applied nitro-
gen (the denominator in the NUE calculation). Temporal changes 
in pathogen races as a direct result of cultivar resistance can com-
pound retrospective comparisons of resistance levels. However, the 
accumulated resistances of modern cultivars are necessary to secure 
productivity in response to the disease pathotypes that are prevalent 
in present-day and future production systems.

Population structure was investigated by principal compo-
nent analysis based on a modified Roger’s genetic distance matrix 
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(Supplementary Fig. 7). Little evidence was found for genetic 
stratification in the cultivar panel, reflecting extensive germplasm 
exchange between breeding programmes under the ‘breeder’s privi-
lege’ facilitated by the International Convention for the Protection 
of New Varieties of Plants14. Temporal trends in gene diversity and 
LD within the A, B and D subgenomes were measured by a slid-
ing window analysis, with 40-cultivar windows and single-cultivar 
increments according to the year of registration. This revealed fluc-
tuating levels for both parameters over the five decades of the study 
period (Supplementary Figs. 8–10), but no evidence for long-term 
reduction in genetic diversity as a result of breeding. These results 
correspond to findings in earlier studies which also demonstrated 
retention of genetic diversity during long-term wheat breeding8,15.

To account for pronounced LD patterns as a consequence of 
breeding16, we analysed the size and distribution of genome-wide 
LD blocks consisting of SNPs in strong LD. Overall, 3,768 LD blocks 
were defined by 8,710 SNPs, with similar distribution patterns  
of LD blocks observed on all three subgenomes (Supplementary 
Figs. 11 and 12 and Supplementary Data File 2). For almost all 
traits, we observed strong linear relationships across all tested  
management intensities between the trait performance and the year 

of cultivar registration (Supplementary Figs. 4 and 5). The consis-
tent improvement in cultivar performance across very different 
agricultural input scenarios suggests continual gains in ecovalence 
as a result of breeding, promoted by official cultivar testing proce-
dures that require trait improvement and consistency across diverse 
environments as a prerequisite for cultivar registration. These find-
ings strongly contradict the longstanding popular paradigm that 
intensive breeding for high performance leads to reduced adaptive 
diversity in modern cultivars and therewith reduces genetic poten-
tial for long-term genetic improvement17–19.

A novel haplotype-based approach to assess genome-wide local 
genomic estimated breeding values and trait variances. To explore 
genetic factors that potentially underlie the significant performance 
improvement of modern elite wheat varieties, independently of 
crop management, we used a novel approach that focuses on trait 
effects conferred by chromosomal segments instead of single mark-
ers. Results from our data show strong linear temporal relationships 
between registration year and the number of detrimental chromosome 
segments. This suggests that breeding has incrementally eliminated 
negative genetic factors over time (Fig. 2 and Supplementary Fig. 4).  
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Fig. 1 | Fifty years of breeding progress in European winter wheat. Plots show trait values for grain yield, yield parameters, disease resistances, grain 
quality and physiological traits measured across cultivars released during the past five decades. Adjusted mean trait values for each of the cultivars are 
calculated for each of the three agrochemical treatment intensities, with varying nitrogen fertilization and/or fungicide application, at six locations over 
two years. Scales for each trait on the y axes represent the relative range from the minimum (innermost edge) to the maximum (outermost edge) mean 
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radiation interception efficiency; RUE, radiation use efficiency; SR, stripe rust resistance; TKW, thousand-kernel weight.
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To relate selection for favourable genetic factors to observed 
genome-wide LD patterns, we designed a novel haplotype-based 
procedure (see Methods; Supplementary Fig. 13), modified from 
classical genomic prediction methods20, that estimates phenotypic 
effects conferred by individual LD blocks. The effects of observed 
haplotype variants on each respective trait were summarized for 
markers sharing the same LD block, enabling us to estimate local 
genomic estimated breeding values (GEBVs) for commonly inher-
ited chromosome segments. These local GEBVs were used to cal-
culate variances among haplotype effects for each genome-wide LD 
block, for all investigated traits (Methods). By grouping SNPs that 
are inherited in common, this novel approach overcomes one of the 
fundamental problems with single-marker effect estimates in struc-
tured breeding populations with pronounced LD. Thus, it improves 
effect estimations in chromosome blocks that might carry interact-
ing alleles, for example, markers linked to the same quantitative 
trait locus. In all three subgenomes, we detected blocks with high 
contributions to variance for grain yield across the different treat-
ments (Fig. 3, Supplementary Figs. 14 and 15 and Supplementary 
Data File 2), implying that significant variation exists in European 
elite winter wheat with relation to the genetic capacity for cultivar 
adaptation to strongly contrasting agricultural input scenarios. The 
most prominent LD block (2D_b003483), spanning 103 SNPs from 
570,951,341 to 608,198,626 bp on chromosome 2D (Supplementary 
Fig. 1), exhibited the highest observed local GEBV variance for grain 
yield under optimum conditions, with estimated haplotype effects 
ranging from −40 kg ha−1 to >30 kg ha−1. This block was found to be 
under strong selection for number of grains per m2 and total plant 
biomass, and haplotypes showing the strongest positive effects on 
grain yield were also fixed in the 20 cultivars with the highest mean 
values for both traits (Supplementary Fig. 16). Well-known wheat 
domestication and adaption genes lie outside the most prominent 
LD blocks (Supplementary Table 10 and Supplementary Fig. 11), 

consistent with recent selection during breeding in adapted elite 
germplasm. Sixteen smaller LD blocks comprising 20–40 SNPs were 
observed on chromosomes 1A, 2A, 4A, 5A, 2B, 4B, 5B, 6B, 1D and 
5D (Supplementary Data File 2).

For the 100 LD blocks with the highest local GEBV variances, we 
investigated how many were shared for each trait across the three 
different treatments in the main trial (Supplementary Data File 2 
and Supplementary Fig. 17). The results suggest that overall yield 
progress over time can be attributed to the accumulation of effects 
from parallel selection acting on multiple yield parameters, disease 
resistances, physiological traits and plant architecture. Correlations 
of individual traits to yield gains suggest that the greatest effect on 
breeding progress for grain yield came from an increase in the num-
ber of kernels per spike, which in turn was a major contributor to 
improvement of the harvest index. While these are traits that are 
relatively simple for breeders to assess and select for, the simulta-
neous strong improvements in radiation use and nitrogen use effi-
ciency indicate that selection for grain yield over time has an overall 
positive influence on the efficiency of physiological resource alloca-
tion and nutrient remobilization. Common haplotypes with strong 
effects on different traits in different intensity levels (Fig. 3 and 
Supplementary Figs. 14, 15 and 17) provide valuable new informa-
tion for targeted breeding of cultivars with consistently good perfor-
mance across optimal and suboptimal environments.

Breeding incrementally eliminates detrimental genetic variants. 
Genetic effects of historical breeding in the context of genetic gain 
were investigated by comparing the coefficient of regression for each 
trait between the number of haplotypes with detrimental or neutral 
(≤0) effects within each cultivar to the year of cultivar registration 
(see Methods). For all traits exhibiting breeding gain over time, we 
found that breeding progress associates clearly with an incremen-
tal reduction in the number of haplotypes conferring detrimental 
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or neutral phenotypic effects (Fig. 2, Supplementary Fig. 4 and 
Supplementary Table 11). As a consequence, the newest 20% of cul-
tivars carried significantly fewer detrimental or neutral haplotypes 
than the oldest 80% of cultivars for almost all traits (Supplementary 
Fig. 18). Grain yield under full agrochemical application showed the 
strongest reduction of non-beneficial LD haplotypes, implying that 
selection for increased grain yield under optimal conditions was the 
major driver in European elite wheat breeding programmes over the 
past 50 years. However, corresponding patterns of allelic selection 
under all treatments (Supplementary Fig. 4) demonstrate a simul-
taneous positive selection effect on performance in reduced input 
production systems. These results suggest that modern elite culti-
vars are genetically more suitable than older cultivars to increase 
productivity in low-input wheat production systems and to mini-
mize yield penalties from environmental or political constraints 
on agrochemical inputs. Interestingly, the regression coefficients 

between year of registration and number of detrimental alleles was 
distinctly lower when considering single SNP markers alone instead 
of LD blocks (Supplementary Table 11), implying that considering 
local GEBV variances of haplotypes is more powerful in detecting 
genome regions that have contributed to the genetic improvement 
of modern elite cultivars.

It may be argued that wheat cultivars specifically targeted for 
implementation in low-input organic production systems are subject 
to different breeding and cultivar testing systems, which consider 
specific requirements for organic production environments that are 
less relevant for conventional breeding and testing. Conversely, con-
ventional cultivar registration procedures test candidates under a 
broad range of environments, including fungicide-free treatments, 
so that cultivars which fulfil registration requirements and perform 
well in independent regional tests can be expected to have a good 
relative performance under diverse conditions including stress 
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environments. Our observation that genetic gain for performance 
under high-input conditions simultaneously increases performance 
under suboptimal management conditions has important conse-
quences for the design of appropriate breeding and cultivar testing 
strategies to enhance sustainability of future agricultural systems. 
Interestingly, under reduced nitrogen or fungicide-free condi-
tions, cultivars registered specifically for organic agriculture rarely 
outperformed conventionally bred cultivars from the same year of 
release (Supplementary Fig. 19).

Climate change predictions forecasting increased drought inci-
dence and severity in major wheat growing areas underline the 
need for cultivars better adapted to unpredictable water supply21,22. 
Yield performance under low-rainfall conditions at location Gross 
Gerau in 2015 (170 l per m2 precipitation during the main growth 
and maturation period from March until July, on a light, sandy 
soil) showed a strong positive correlation between irrigated and 
non-irrigated conditions (R2 = 0.57). A consistent mean irrigation 
effect on grain yield of +2.06 t ha−1 across all genotypes confirmed 
the negative effect of drought in this environment. Surprisingly, the 
number of haplotype blocks with detrimental or neutral influence 
on grain yield showed a strong reduction through breeding under 
both the irrigated (R2 = 0.31) and the non-irrigated (R2 = 0.22) con-
ditions (Supplementary Fig. 20a and Supplementary Table 11). This 
suggests that long-term breeding progress for maximum grain yield 
under optimal conditions has also improved the adaptive capacity 
of modern elite wheat cultivars to outperform older cultivars under 
low-rainfall conditions. Improved water use efficiency may relate to 
radiation interception efficiency, photosynthetic efficiency and an 
extended green-canopy duration (staygreen character), all features 
that we found to be improved in modern cultivars (Supplementary 
Results and Supplementary Figs. 4 and 20b).

Exploiting genetic potential to improve sustainable produc-
tivity. A haplotype-based simulation approach, using haplotype 
blocks weighted according to their estimated trait variances, facili-
tated forecasts of genetic potential within our cultivar panel in 
the context of future sustainable production. Estimated effects of 
stacking the most beneficial haplotypes for yield under optimum 
conditions suggested that replacing only 50 detrimental loci in the 
20 highest-performing, most recent cultivars could improve grain 
yield potential by 2.6%, whereas accumulation of the most benefi-
cial haplotypes at all 3,768 genome-wide LD blocks could increase 
yield potential by up to 23% compared with the best-current elite 
cultivars (Supplementary Fig. 21). Consideration of haplotype block 
effects can also facilitate design of complex crosses among comple-
mentary genotypes, to enrich breeding progenies with beneficial 
haplotypes. Induced targeted recombination has potential to facili-
tate this process in the future23. Combining accelerated breeding 
cycles with haplotype-based genomic selection methods could fur-
ther accelerate the generation and recognition of superior recom-
binants to maximize exploitation of the available genetic potential.

Countering common perceptions of breeding and crop diversity. 
The results of this study clearly contradict, in one of the world’s 
most important crops, the popular paradigm that intensive plant 
breeding results in cultivars that have high performance under 
optimal conditions but a poor capacity to perform under subopti-
mal growing conditions. In fact, we found the opposite to be true: 
the positive effects of genetic gain in modern cultivars for sustain-
ability-related traits such as NUE or disease resistance were even 
more apparent under reduced input scenarios than under optimal 
agrochemical applications (Supplementary Figs. 4e,f,k and 22), and 
were also clearly seen under drought conditions (Supplementary 
Fig. 20). In light of these results, recommendations to use environ-
mental response measures as a proxy for cultivar resilience10, or to 
guide breeding decisions, appear misguided. Given that breeding, 

cultivar registration and post-registration testing procedures con-
sider diverse environments, across many years or even decades, 
increased yield performance in conjunction with enhanced yield 
stability are the expected outcome of long-term cultivar breeding 
under increasingly erratic climatic conditions. Our study demon-
strates that breeding promotes both cultivar performance and yield 
stability across diverse environments and management scenarios 
(Supplementary Fig. 23). Haplotype-based approaches for discov-
ery and combination of beneficial variants associated with breed-
ing progress provide a novel methodological basis to guide breeding 
and maintain future yield progress in the face of social, political and 
environmental constraints on agriculture.

Methods
Plant material and genome-wide SNP marker data. Seeds from a collection of 
191 wheat cultivars, registered in Europe between 1966 and 2013, were bulked 
under field conditions to generate sufficient seeds for multi-location, multi-
year field trials. The 191 cultivars were selected for the study based on their 
economic and agronomic importance in wheat production in Germany during 
their respective period of release. Wheat productivity in Germany has been 
among the highest in the world during the past five decades (see global crop 
production statistics at http://www.fao.org/faostat/en/#data), and during their 
period of release, most cultivars in the test panel were market-leading varieties 
within the four main grain quality classes ‘E’, ‘A’, ‘B’ and ‘C’ (very high to very low 
baking quality) of the German wheat quality classification. Thus, the study panel 
represents long-term plant breeding progress at the very peak of global agronomic 
performance of the world’s most widely grown food crop. Full details of cultivars, 
including year and country of registration and grain quality classification, are 
provided in Supplementary Table 1.

Leaf DNA samples from all cultivars in the panel were genotyped with a 
15K SNP Illumina Infinium iSelect genotyping array24 that was developed by 
TraitGenetics using selected, genome-wide, high-quality, polymorphic SNP probes 
from the 90K Illumina wheat genotyping array (Illumina)25. Raw genotype data 
were filtered to retain only markers with ≤10% missing values and a minor allele 
frequency of ≥5%.

Physical genetic SNP marker positions in the wheat genome were obtained 
using the alignment software GYDLE (Gydle Inc. Bioinformatics Service;  
http://www.gydle.com). The 50-mer nucleotide sequences corresponding to the 
SNP probes on the Illumina iSelect wheat 15K SNP bead-chip array were aligned 
to the genome sequence assembly for bread wheat cultivar Chinese Spring (IWGCS 
Reference Sequence v1.0; https://wheat-urgi.versailles.inra.fr/Seq-Repository/
Assemblies). The GYDLE alignment parameters used allowed for reporting of all 
positions in the genome assembly where the 50-mer probe aligned with >80% 
sequence homology, to capture all potential hybridization sites for the probes. 
To determine which of the putative SNP probe hybridization sites in the wheat 
genome revealed polymorphism in the iSelect 15K bead-chip assay, previous 
knowledge about the chromosomal locations of genetically mapped SNP loci 
was used to filter the probe hybridization sites. This filtering step identified SNP 
probes that had only one putative hybridization site per chromosome and that had 
been previously genetically mapped on the same chromosome. Only the 8,710 
high-quality, polymorphic SNP probes meeting these criteria were included in 
subsequent analyses. Physical genetic positions and calls for these 8,710 SNPs are 
provided in Supplementary Data File 1.

Field trials and phenotype data analysis. Field trials were conducted in full-
sized yield plots (harvested area 4.5–12 m2 depending on site-specific sowing and 
harvesting machinery), across a total of seven locations throughout Germany 
(Supplementary Table 2) characterized by diverse soil conditions (Supplementary 
Table 3), in four consecutive growing seasons from 2014–2015 to 2017–2018. Plots 
were sown with a sowing density of 330 viable seeds per m2.

The main field trials, in which all 191 cultivars in the panel were tested, were 
performed at each of six locations over the growing seasons 2014–2015 and 
2015–2016. In each of the 12 year × location environments in the main trials, the 
191 cultivars were grown in at least two replicates, sown side by side under each 
of the three different cropping intensities, designated as HiN/HiF, HiN/NoF and 
LoN/NoF treatments. The HiN/HiF treatment received mineral fertilizer at a 
total nitrogen supply rate of 220 kgN ha−1 (fertilization adjusted for soil mineral 
nitrogen, Nmin) along with full intensity of fungicides, insecticides and growth 
regulators, representing standard agrochemical applications under intensive wheat 
production conditions in western Europe. The HiN/NoF treatment also received 
a total nitrogen supply of 220 kgN ha−1; however, no fungicides were applied. The 
LoN/NoF treatment was supplied with only 110 kgN ha−1 and no fungicides were 
applied. Full details of sowing dates are shown in Supplementary Table 3.

To reduce neighbour effects due to large differences among the cultivars in 
plant height and maturation period, the cultivars in the main trial were grouped 
within each treatment and replication into three sub-blocks considering previous 
knowledge about these parameters in the cultivar panel. Cultivars were completely 
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randomized within the experimental sub-blocks and the order of the treatments 
was completely randomized at each location in each year. To prevent confounding 
effects from weed contamination and basic nutrient deficiencies, standard weed 
control measures were applied across all treatments, and nutrients other than 
nitrogen were applied according to requirements determined individually at  
each location.

Levels of susceptibility to the fungal foliar diseases powdery mildew (Blumeria 
graminis (DC.) Speer f.sp. tritici) and stripe rust (Puccinia striiformis Westend f.sp. 
tritici), which showed moderate-to-strong infection levels over multiple locations 
in one or both years, were determined by visual scoring on all plots. The respective 
resistance score was expressed on a scale from 0% to 100% as the percentage 
of the non-infected leaf area. Disease scores for stripe rust were recorded in all 
environments except at location KIE, where infection levels were insufficient in 
both trial seasons. For the same reason, powdery mildew scores were recorded  
in both growing seasons only in the fungicide-free treatments at locations GGE 
and QLB, and only under the HiN/HiF treatment at GGE in the 2015–2016 
growing season.

Before grain harvest from each plot, an aliquot of 0.5 m in the centre of the 
plot was removed to determine the number of spikes per m2 and the above-ground 
plant biomass (corrected for the specific row width at each individual location). 
After threshing of these samples, the harvest index was calculated as the grain yield 
divided by the above-ground plant biomass (grain yield plus straw dry weight).

Grain yield was determined on the plot level by threshing from the mature 
standing canopy. Immediately after threshing, grain moisture was measured 
and grain yield was corrected to a standard moisture of 14%. A random grain 
subsample from each plot was used to determine the thousand-kernel weight. 
Grain quality parameters related to baking quality were measured according 
to standard procedures as follows: Hagberg–Perten falling number, ISO 
3092:2009; near-infrared spectrometry estimates for Zeleny sedimentation index 
corresponding to ISO 5529:2007; crude protein, AACCI Method 39-11.01.

Protein yield was determined by multiplying the grain yield by the crude 
protein content of each plot sample. Nitrogen yield was calculated by dividing the 
protein yield by the wheat-specific protein factor of 5.7. NUE was expressed  
as the quantity of nitrogen in the harvested grains in relation to the quantity of 
fertilized nitrogen.

For the main field trials, a linear mixed model (equation (1)) was used to 
estimate adjusted means across locations and years for each cultivar in each 
treatment.

μ= + + + + + +

+ + +

g t Y L

e

P (gt) (YL)

(YLR) (YLRTB)
(1)

ijklmo i j ij k l kl

klm jklmo ijklmo

where Pijklmo is the observed phenotype of the ith variety, the jth treatment, the kth 
year, the lth location, the mth replication and the oth block, μ is the general mean, gi 
is the fixed effect of the ith variety, tj is the fixed effect of the jth treatment and (gt)ij 
is the fixed effect of the ith variety in the jth treatment. Yk represents the random 
effect of the kth year, Ll is the random effect of the lth location, (YL)kl is the random 
interaction of the lth location, in the kth year, and (YLR)klm is the random effect of 
the mth replication, in the lth location, in the kth year. (YLRTB)jklmo represents the 
random effect of the oth block, in the jth treatment, in the mth replication, in the 
lth location, in the kth year, while eijklmo is the error term. Fixed effects are denoted 
by lowercase letters, and random effects are denoted by uppercase letters. The 
average standard errors of the difference between the adjusted means were used to 
determine the least significant difference using the quantiles of the z-distribution. 
Data was analysed in the software R26 with package asreml27.

A fully random model (equation (2)) was used to estimate variance 
components.

μ= + + + + + +
+ + + + +
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e
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(2)
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where Gi the random effect of the ith variety, Tj is the random effect of the jth 
treatment and (GT)ij is the random effect of the ith variety in the jth treatment. 
(GYL)ikl is the random effect of the ith variety in the lth location and the kth 
year. (YLT)jlk is the interaction of the jth treatment with the lth location in the 
kth year.

For disease resistance traits, data from all replications per treatment were 
averaged into an arithmetic mean across all scoreable test locations and years.

A model containing only those interactions (equation (3)) that contribute 
to the heritability, with the cultivar as a random factor in addition to fixed main 
effects, was used to estimate the standard error of treatment means that was used 
subsequently to estimate the heritability.

μ= + + + + + + +g t y l eP (GT) (GYL) (3)ijkl i j k l ij ikl ijkl

where Pijkl is the observed phenotype of the ith variety in the jth treatment and the 
kth year at the lth location, yk is the fixed effect of the kth year and ll is the fixed 
effect of the lth location. eijkl is the error term.

Genetic variance from equation (2) and the standard error from equation (3) 
were further used to estimate broad-sense heritability for each trait, as described in 
equation (4)13.

=
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where σG
2 is the genetic variance derived from the full random model (equation (2)) 

and SE2 is the squared standard error of the difference between the means, derived 
from equation (3). Data analysis was performed with the R packages lsmeans28 and 
lme4 (https://CRAN.R-project.org/package=lme4)29.

Average annual gains in trait performance were quantified from the slopes of 
the linear regression curve for each trait, based on the adjusted mean trait values 
across all locations and years, separately for each of the three intensity levels. Figure 
1 was created using the R package circlize30.

Validation trials. To account for potential compounding effects of nitrogen 
application and fungicides, we conducted an additional experiment that 
implemented a full factorial combination of high or low nitrogen levels combined 
with the presence or absence of fungicides, respectively (Supplementary Table 3).  
A subset of 42 cultivars from the main panel was selected to be representative 
for the genetic diversity in the main panel throughout the entire five-decade 
cultivar release period (labelled ‘V’ in Supplementary Table 1 and highlighted 
in Supplementary Fig. 7). The validation panel was tested in eight contrasting 
environments, spanning five locations and four growing seasons (2014–2015 to 
2017–2018), in two replications (with the exception of location KIE, for which 
three replications were performed). Four treatments were compared, comprising 
HiN/HiF, HiN/NoF and LoN/NoF (as described above for the main experiment) 
along with a LoN/HiF treatment comprising 110 kgN ha−1 with fungicides. 
Furthermore, at four of the locations in 2016–2017 and/or 2017–2018, the 
additional trials also included eight new cultivars, seven of which were registered 
between 2014 and 2016, making a total of 50 entries in these environments (for 
details of locations and treatments, see Supplementary Tables 2 and 3).

Here, we report only grain yield performance for the validation trials. Because 
the composition of the validation trials enabled us to run the trials without 
grouping into sub-blocks, we used a slightly modified linear mixed model for the 
validation trial to estimate adjusted mean yields across locations and years for 
each cultivar in each treatment, using rows and columns rather than sub-blocks to 
correct for spatial effects, as shown in equation (5):
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where Pijklmwz is the observed phenotype of the ith variety, the jth treatment, the 
kth year, the lth location, the mth replication, the wth column and the zth row. 
(YLW)klw represents the random effect of the wth column, in the lth location, in the 
kth year. (YLZ)klz represents the random effect of the zth row, in the lth location, 
in the kth year, while eijklmwz is the error term. The average standard errors of the 
difference between the adjusted means were used to determine the least significant 
difference using the quantiles of the z-distribution. Data was analysed in the 
software R26 with package asreml27.

Accordingly, a lightly modified fully random model (equation (6)) was used to 
estimate variance components in the validation panel:
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where (YLT)klj is the interaction of the jth treatment with the lth location in  
the kth year.

Broad-sense heritability for grain yield of the validation trials was calculated as 
described for the main field trials, according to equations (3), (4) and (6).

Evaluation of yield stability. To evaluate yield stability of the 191 cultivars across 
all locations, years and management scenarios in the main trials, we calculated 
the coefficient of variation for grain yield across all treatment by location by year 
combinations in the main trial, along with Pi, the cultivar superiority index31, 
measured according to equation (7):
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(X X )

2
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n
j ij
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max,
2

where Xij is the yield of cultivar i in the year by location by treatment combination 
j, Xmax,j is the highest yield of any cultivar across environments and treatments, and 
n is the number of year by location by treatment variants. Thus, Pi describes how 
closely a cultivar X comes to achieving the maximum yield potential (Xmax,j).
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LD and gene diversity. Temporal trends in genome-wide LD and gene diversity 
in relation to the year of cultivar release were investigated in detail using a sliding 
window analysis. LD was calculated per chromosome as the average of r2 values 
between adjacent markers separated by ≤20 Mb. Gene diversity was calculated 
from genome-wide SNP genotype scores according to Nei32. Because the panel 
contained different numbers of cultivars registered in each year, we applied a 
constant window size of 40 genotypes to avoid numerical bias from year effects. 
After randomizing the cultivar order in each year, LD and gene diversity were 
calculated for windows of 40 cultivars, beginning with the oldest 40 cultivars 
and incrementing in single-cultivar steps through to the most recently released 
cultivars tested in the main trials. Values were plotted against the average year in 
each window as a time reference.

Genome-wide LD block construction. Genome-wide SNP markers were 
assigned to LD blocks by grouping based on pairwise r2 values with a minimum 
LD threshold of r2 = 0.7. Calculations were performed in the statistical software R 
using an algorithm implemented in the R package SelectionTools (downloadable at 
http://population-genetics.uni-giessen.de/~software/). Pairwise r2 values between 
SNP markers were first calculated across each chromosome, followed by selection 
of adjacent pairs on each chromosome with the highest LD among all pairs. If 
the r2 of a pair exceeded the threshold of 0.7, these markers were defined as a 
new LD block. In the next step, flanking markers on each side of the LD block 
were considered and added to the same block if their pairwise r2 values with the 
respective outer markers in the LD block also exceeded the threshold. A tolerance 
parameter per block of t = 1 was set to account for incorrectly positioned markers 
or biased LD estimates, meaning that, if a flanking marker did not fulfil the LD 
threshold, the block was still extended if at least t adjacent flanking markers 
fulfilled the LD grouping threshold. If more than t flanking markers had a lower 
LD than r2 = 0.7, the block was completed. This procedure was repeated until all 
markers were assigned to blocks. SNPs that were not in LD with any other marker 
were assigned to individual LD blocks.

Local genomic estimated breeding values, variance estimation and weighting 
of genome-wide LD blocks. To identify chromosomal regions with a high 
effect on the respective traits in the panel, while simultaneously accounting for 
pronounced LD structures expected as a result of directional selection, we did not 
consider phenotypic effects of single markers, but rather assigned their effects to 
LD blocks (see above) consisting of groups of adjacent markers in LD, resulting in 
local GEBVs for haplotypes within chromosomal blocks. The principal workflow 
of the method is shown in Supplementary Fig. 13. We first predicted genome-
wide marker effects for each trait in each cropping intensity level, using a ridge-
regression best linear unbiased prediction (BLUP) model20 that predicts all marker 
effects simultaneously. This procedure prevents the phenotypic effect of a SNP 
marker from being influenced by neighbouring SNPs in LD to it, which potentially 
overestimates the effect of a quantitative trait locus by repeatedly reassigning the 
effect to multiple SNPs in an LD block. By contrast, the calculation of local GEBVs 
overcomes this problem by assigning effects to LD blocks rather than to individual 
SNPs within each block. Because the BLUP model fits all SNPs simultaneously, the 
effect of a SNP in LD with a quantitative trait locus within a block is counted only 
once. We then summed up the predicted allelic effects of each observed haplotype 
variant for all genome-wide LD blocks. Finally, we estimated variances among 
local GEBVs for haplotypes within each LD block. Two strategies were applied to 
investigate relationships between trait-relevant haplotypes and the year of cultivar 
registration: first, we disregarded the most recent 20% of the cultivars and used the 
remaining 80% of the test panel to estimate LD block variances as described above. 
Based on this estimate, we selected the 100 LD blocks with the highest variance 
among local GEBVs of the haplotypes for each respective trait. For all of these 
selected blocks, we counted the total number of haplotypes with detrimental or 
neutral estimated effects (effect ≤ 0). We then counted the same haplotypes in the 
remaining 20% of cultivars, which were not used in the variance estimation of the 
LD blocks, and compared the two groups (oldest 80% versus newest 20%) using 
Student’s t-test33. Second, we used the whole panel to estimate LD block variances, 
considered the 100 blocks with the highest variances and plotted the number of 
haplotypes conferring neutral or deleterious effects in each cultivar against its year 
of registration.

Estimating available yield potential from haplotype stacking. To estimate the 
potential for grain yield improvement (under optimum conditions) in the modern 
elite European winter wheat gene pool represented by the cultivar panel, we 
compared four scenarios that assume the ability to stack different total numbers 
of predicted ‘best’ haplotypes. The 20 cultivars with the highest yields under 
optimum conditions (HiN/HiF) were considered for simulated haplotype stacking. 
First, in silico genotypes were created from these selected cultivars by simulating 
the exchange of detrimental or neutral haplotypes by the highest positive-effect 
haplotype at each of the (1) 20, (2) 50 or (3) 100 blocks with the highest estimated 
variances for grain yield under the HiN/HiF treatment. In a fourth simulation 
scenario, (4) we derived new in silico genotypes from each of the 20 cultivars by 
assuming an exchange with the most favourable haplotype at each of the 3,768 
genome-wide LD blocks. GEBVs for each of the 20 derived in silico cultivars were 

compared with the initially calculated GEBVs for the 20 most recent cultivars, and 
the relative change in predicted performance was calculated.

Genetic correlations. Genetic correlations between traits in the three different 
cropping intensities were estimated following equation (8):

σ

σ σ
=r

(trait1, trait2)

(trait1)* (trait2)
(8)g

g

g g
2 2

Where trait1 and trait2 represent the two phenotype sets for which the genetic 
correlation was estimated. The genetic covariance σg and genetic variances σg

2 were 
estimated in asreml by fitting a multi-trait mixed model for the two traits under 
consideration, using an additive genomic relationship matrix calculated from 8,710 
polymorphic SNP markers with the R package rrBLUP34.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Seed aliquots from all cultivars used in the study are available from the 
corresponding authors on request for research purposes. The complete set of 
adjusted mean trait data from all field locations, years, treatments and replications 
is available at the online data repository https://zenodo.org/record/1316947 with 
the digital object identifier number https://doi.org/10.5281/zenodo.1316947.  
All other data used in the analyses are provided in the Supplementary Information.
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information.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection was performed manually by technical staff at each of the field trials using standardized data scoring procedures and 
without the use of specific software.

Data analysis The software ‘GYDLE’ (www.gydle.com) was used for SNP marker alignment to obtain physical marker positions in the wheat genome. 
 
All remaining data analyses were performed in 'R' version 3.5.1. The following R packages were used for the different analyses: 
 
- 'asreml' (fitting mixed and random linear models for variance component estimation and entry mean adjustment, genetic variance 
estimation for genetic correlations) 
- 'lsmeans' (fitting mixed and random linear models for variance component estimation) 
- 'rrBLUP' (calculation of the genomic relationship matrix from SNP data for fitting a multitrait model for calculation of genetic 
correlations) 
- 'SelectionTools' (version 18.1: calculation of pairwise linkage disequilibrium (LD) and gene diversity among SNPs, definition of LD blocks, 
prediction of SNP effects using ridge regression BLUP) 
 
References for the software 'R' and the packages 'asreml', 'lsmeans' and 'rrBLUP' are listed in the Supplementary Text reference list and 
the download link for the 'SelectionTools' package (http://population-genetics.uni-giessen.de/~software/) is also provided in the 
manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.



2

nature research  |  reporting sum
m

ary
O

ctober 2018
Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The complete set of adjusted mean trait data from all field locations, years, treatments and replications will be available in an online data repository via digital 
object identifier number doi:10.5281/zenodo.1316947 after acceptance of the manuscript. All other data used in the analyses is provided in the supplementary 
materials. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study investigated a panel of 191 elite winter wheat cultivars released during the past 50 years in Western Europe, particularly 
Germany. Diverse phenotypic traits were analyzed in replicated, randomised field trials across six different locations and two years. In 
the main trial all 191 varieties were planted side-by-side under three different management intensity levels (high nitrogen, normal 
fungicide applications; high nitrogen without fungicides; low nitrogen without fungicides). A validation study including  1/4 of the 
cultivars was grown in a full treatment factorial (incuding the same three treatments plus a 4th treatment with low nitrogen and 
normal fungicide application).  
 
To investigate genetic parameters, ~9,000 polymorphic, high-quality single nucleotide polymorphism (SNP) markers from the 90k 
SNP wheat genotyping array were used. Marker selection parameters are provided in the supplementary methods. 
 
The main objectives of the study were to: 
1) compare phenotypic measurements for different traits between the 191 cultivars from different years of variety registration and 
across a range of chemical input intensities, to investigate if modern varieties only perform well under high agrochemical inputs; 
2) analyze genetic impacts of five decades of winter wheat breeding; 
3) investigate the genetic potential in EU wheat germplasm. 
 
To addressing objectives 2 and 3 we applied a novel framework to estimate haplotype-based trait variances from local genomic 
estimated breeding values (GEBV) for chromosome blocks consisting of multiple SNP markers in strong LD, thereby taking into 
account the directional selection history for specific fragments.

Research sample The study population was a panel of 191 European winter wheat (Triticum aestivum) cultivars. The materials were selected based on 
their agronomic importance (in particular the area of cultivation and the performance during the specific period of release) to 
represent  the most successful varieties being grown during the last five decades of wheat production in Western Europe. The focus 
was on the most important cultivars in Germany, where winter wheat yields were consistently  among highest in the world during 
this time period. In this respect the sample population was selected to represent breeding progress at the very peak of global wheat 
production over the past 50 years.

Sampling strategy To address the question of breeding progress over time we sampled representative, high-performing cultivars from each of the past 
5 decades, using historical information about cultivar performance in national registration/performance trials, duration of cultivar 
listing and area of cultivation during the release period. Considering the need for best possible distribution of registration dates 
across the 5-decade study period, we limited the total number of cultivars to ~200 to avoid bias against earlier decades with  
(relatively) fewer high-performing cultivars. A small number of (mainly older) cultivars were eliminated during the seed production 
phase because they showed a strong degree of lodging (which leads to severe neighbor-plot effects in cereal field trials), resulting in 
a final panel of 191 cultivars. Nevertheless, the number of available  cultivars was somewhat lower in the first two decades of the 
study period, hence fewer cultivars were sampled for this period.  To address this imbalance we used a sliding-window approach for 
temporal analyses and performed regression analyses, considering each individual cultivar in association with its year of registration 
rather than comparing all cultivars between different registration decades. 

Data collection Data collection was performed manually by technical staff at each of the field trials using standardized data scoring procedures. 
Genotype data for all cultivars was generated using standard procedures with a commercial 90k SNP genotyping array for hexaploid 
wheat. 

Timing and spatial scale The main field trials were performed in 12 independent environments (2015/16 and 2016/17 at six locations) across Germany. The 
validation trials were performed in 8 independent environments across 5 locations over 4 growing seasons (2014/15 - 2017/18).
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Data exclusions No data were excluded in this study.

Reproducibility Full details on the heritability of all traits investigated and on the contribution of variance from genotypes, locations, years, 
treatments and their interactions are provided in Supplementary Figure 1 and Supplementary Table 6. Due to a high number of 
replicated individual field trials (see Supp. Text) we obtained very high broad-sense heritabilities and very low error variances, 
indicating extremely high reproducibility of the trials. 

Randomization Full details on the trial design are provided as Supplementary Methods. In each replication and treatment all test cultivars were 
completely randomized within the experimental sub-blocks. Order of treatments was randomised for each per location and year. 

Blinding Due to the nature of the study, where large-scale data collection was necessary simultaneously at 6 different sites across Germany, 
all data collection at each individual trial location was performed completely independently by different investigators according to 
agreed data collection standards. No data was exchanged between the individual data collectors. Furthermore, all data was 
associated only with plot numbers from a  randomized sowing plan and not with cultivar names, corresponding to sample blinding 
between replications and treatments at each study location.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions In all years and at all field trial locations, trials were sown between October 1st and November 4th depending on the location. 

Depending on year and location, the soil pH content before harvest ranged from 5.5 to 7.4. P2O5 and K2O concentrations 
ranged from 5.1-37 mg/100g soil and from 6.3-38 mg/100g soil, respectively. Depending on the trial, preceding crops were sugar 
beet, corn, oilseed rape, oat, spring barley, Faba bean or Avena. Full details about the soil, climate and field conditions of the test 
locations are provided in Supplementary Table 2.

Location All field trials were performed in Germany. The main trials were performed at Gross Gerau,  Klein Altendorf, Kiel, 
Rauischholzhausen, Quedlinburg and Hannover in the growing seasons 2015/16 and 2017/18, while the validation trials were 
grown at Kiel, Rauischholzhausen, Quedlinburg, Hannover and Weilburger Grenze between 2014/15 and 2017/18. Geo-
references for all trial locations are provided in Supplementary Table 2.

Access and import/export N/A – all samples were obtained from registered winter wheat cultivars which are freely available for breeding and research.

Disturbance N/A – all trials were performed on agricultural field trial locations in the context of standard crop rotations, details about 
preceding crops are provided in Supplementary Table 2.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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